Park J, Lee J (2004) Fire resistance of light-framed wood floors exposed to real and standard fire. J Fire Sci 6:449–471. doi:10.1177/0734904104042548
Article
Google Scholar
prEN1991-1-2 (2002) Eurocode 1: actions on structures, part 1–2: actions on structures exposed to fire. CEN, Brussels
Manzello SL, Gann RG, Kukuck SR, Lenhert DB (2007) Influence of gypsum board type (X or C) on real fire performance of partition assemblies. Fire Mater 7:425–442. doi:10.1002/fam.940
Article
Google Scholar
Manzello SL, Gann RG, Kukuck SR, Prasad K, Jones WW (2007) Performance of a non-load-bearing steel stud gypsum board wall assembly: experiments and modelling. Fire Mater 5:297–310. doi:10.1002/fam.939
Article
Google Scholar
Manzello SL, Gann RG, Kukuck SR, Prasad K, Jones WW (2005) Real fire performance of partition assemblies. Fire Mater 6:351–366. doi:10.1002/fam.892
Article
Google Scholar
Sultan M (1996) A model for predicting heat transfer through noninsulated unloaded steel-stud gypsum board wall assemblies exposed to fire. Fire Technol 3:239–259. doi:10.1007/BF01040217
Article
Google Scholar
Lennon T, Moore D (2003) The natural fire safety concept—full-scale tests at Cardington. Fire Saf J 7:623–643. doi:10.1016/S0379-7112(03)00028-6
International Organization for Standardisation (1975) ISO 834, fire resistance tests—elements of building construction. ISO, Switzerland
British Standard (1987) BS 476: parts 20–24, fire tests on building materials and structures. British Standard, UK
Trelles J, Mawhinney JR (2010) CFD investigation of large scale pallet stack fires in tunnels protected by water mist systems. J Fire Prot Eng 3:149–198. doi:10.1177/1042391510367359
Article
Google Scholar
Hopkin DJ, Lennon T, El-Rimawi J, Silberschmidt V (2011) Full-scale natural fire tests on gypsum lined structural insulated panel (SIP) and engineered floor joist assemblies. Fire Saf J 8:528–542. doi:10.1016/j.firesaf.2011.07.009
Article
Google Scholar
Jones B (2001) Performance of gypsum plasterboard assemblies exposed to real building fires. Dissertation/Thesis, University of Canterbury
Nyman JF (2002) Equivalent fire resistance ratings of construction elements exposed to realistic fires. Dissertation/Thesis, University of Canterbury
Nyman JF, Gerlich HJT, Wade C, Buchanan AH (2008) Predicting fire resistance performance of drywall construction exposed to parametric design fires—a review. J Fire Prot Eng 2:117–139. doi:10.1177/1042391507080811
Article
Google Scholar
Barnett CR (2007) A new T-equivalent method for fire rated wall constructions using cumulative radiation energy. J Fire Prot Eng 2:113–127. doi:10.1177/1042391506066098
Article
Google Scholar
Frangi A, Fontana M (2005) Fire performance of timber structures under natural fire conditions. Fire Saf Sci 8:279–290. doi:10.3801/IAFSS.FSS.8-279
Article
Google Scholar
Hakkarainen T (2002) Post-flashover fires in light and heavy timber construction compartments. J Fire Sci 2:133–175. doi:10.1177/0734904102020002074
Article
Google Scholar
Gagnon S, Pirvu C (2011) CLT handbook: cross-laminated timber. Forintek Canada Corporation, Canada
Kuilen JWGVD, Ceccotti A, Xia Z, He M (2011) Very tall wooden buildings with cross laminated timber. Proc Eng 14:1621–1628. doi:10.1016/j.proeng.2011.07.204
Frangi A, Fontana M, Hugi E, Jübstl R (2009) Experimental analysis of cross-laminated timber panels in fire. Fire Saf J 8:1078–1087. doi:10.1016/j.firesaf.2009.07.007
Article
Google Scholar
Frangi A, Fontana M, Knobloch M, Bochicchio G (2008) Fire behaviour of cross-laminated solid timber panels. Fire Saf Sci 9:1279–1290. doi:10.3801/IAFSS.FSS.9-1279
Article
Google Scholar
Osborne L, Dagenais C (2012) Preliminary CLT fire resistance testing report. Point-Claire, Canada
Frangi A, Bochicchio G, Ceccotti A, Lauriola MP (2008) Natural full-scale fire test on a 3 storey XLam timber building. In: Proceedings of 10th world conference on Timber Engineering (WCTE), Miyazaki, Japan
McGregor C (2013) Contribution of cross laminated timber panels to room fires. Dissertation/Thesis, Carleton University
Karlsson B, Quintiere JG (2000) Enclosure fire dynamics. CRC Press, Boca Raton
Bwalya A, Lougheed G, Kashef A, Saber H (2011) Survey results of combustible contents and floor areas in canadian multi-family dwellings. Fire Technol 4:1121–1140. doi:10.1007/s10694-009-0130-8
Article
Google Scholar
Ko Y, Michels R, Hadjisophocleous G (2011) Instrumentation design for HRR measurements in a large-scale fire facility. Fire Technol 4:1047–1061. doi:10.1007/s10694-009-0115-7
Article
Google Scholar
Feng M, Wang YC, Davies JM (2003) Structural behaviour of cold-formed thin-walled short steel channel columns at elevated temperatures. Part 1: experiments. Thin-Walled Struct 6:543–570. doi:10.1016/S0263-8231(03)00002-8
EN 1995-1-2 (2004) Eurocode 5: design of timber structures, part 1–2: general—structural fire design. CEN, Brussels
Misra MK, Ragland KW, Baker AJ (1993) Wood ash composition as a function of furnace temperature. Biomass Bioenergy 2:103–116. doi:10.1016/0961-9534(93)90032-Y
Article
Google Scholar
Ragland KW, Aerts DJ, Baker AJ (1991) Properties of wood for combustion analysis. Bioresour Technol 2:161–168. doi:10.1016/0960-8524(91)90205-X
Nordic Engineered Wood (2013) Nordic X-lam technical data (T-S22_e).
Janssens M, Tran HC (1992) Data reduction of room tests for zone model validation. J Fire Sci 6:528. doi:10.1177/073490419201000604
Article
Google Scholar
Bryner NP, Johnsson EL, Pitts WM (1994) Carbon monoxide production in compartment fires: Reduced-scale enclosure test facility. NISTIR-5568, National Institute of Standard and Technology, US
Dembsey NA, Pagni PJ, Williamson RB (1995) Compartment fire near-field entrainment measurements. Fire Saf J 4:383
Article
Google Scholar
McKay C (2002) Carbon monoxide generation in a compartment with a doorway during a fire. Dissertation/Thesis, Virginia Polytechnic Institute and State University
Emmons HW (2002) Vent flows. In: DiNenno PJ (ed) SFPE Handbook of fire protection engineering, Third edn. National Fire Protection Association, Massachusetts, 2-32, 2-41
Gottuk DT, Lattimer BY (2002) Effect of combustion conditions on species production. In: DiNenno PJ (ed) SFPE handbook of fire protection engineering, Third edn. National Fire Protection Association, Massachusetts, 2-54, 2-82
Gottuk DT, Roby RJ, Peatross MJ, Beyler CL (1992) Carbon monoxide production in compartment fires. J Fire Prot Eng 4:133–150. doi:10.1177/104239159200400402
Article
Google Scholar