Skip to main content
Log in

Modeling and Simulation of High Pressure Water Mist Systems

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

This paper describes work done to improve and validate the capability of fire dynamics simulator (FDS) to predict the dynamics of water mist sprays. Three single orifice and five multi-orifice spray heads are modeled with FDS based on information on the flow-rate, spray angle, operating pressure and experimentally determined particle size distribution. The capability of FDS to predict the drop size, velocity, mist flux and number concentration profiles within the spray cone is assessed. The effects of turbulence modeling on the predictions of the spray dynamics is investigated. The capability of FDS to predict the air entrainment by high-speed water sprays is validated using experiments in rectangular channels with open ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Deardorff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci. 29:91–115. doi:10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2

    Article  Google Scholar 

  2. Ditch B, Yu HZ (2008) Water mist spray characterization and its proper application for numerical simulations. Fire Saf Sci 9:541–552. doi:10.3801/IAFSS.FSS.9-541

  3. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765. doi:10.1063/1.857955

    Google Scholar 

  4. Grant G, Brenton J, Drysdale D (2000) Fire suppression by water sprays. Prog Energy Combust Sci 26(2):79–130. doi:10.1016/S0360-1285(99)00012-X

    Article  Google Scholar 

  5. Hart R (2006) Numerical modelling of tunnel fires and water mist suppression. PhD thesis, University of Nottingham. http://etheses.nottingham.ac.uk/185/1/thesis.pdf

  6. Husted B (2007) Experimental measurements of water mist systems and implications for modelling in CFD. PhD thesis, Lund University

  7. Kennedy IM, Moody MH (1998) Particle dispersion in a turbulent round jet. Exp Thermal Fluid Sci 18(1):11–26. doi:10.1016/S0894-1777(98)10009-2

    Article  Google Scholar 

  8. Kim SC, Ryou HS (2003) An experimental and numerical study on fire suppression using a water mist in an enclosure. Exp Thermal Fluid Sci 38(11):1309–1316. doi:10.1016/S0360-1323(03)00134-3

    Article  Google Scholar 

  9. Kim SC, Ryou HS (2004) The effect of water mist on burning rates of pool fire. J Fire Sci 22(4):305–323. doi:10.1177/0734904104041796

    Google Scholar 

  10. McGrattan KB, Hostikka S, Floyd JE, Mell WE, McDermott R (2007) Fire dynamics simulator, technical reference guide, vol 1: Mathematical model. NIST Special Publication 1018, National Institute of Standards and Technology, Gaithersburg

  11. Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A 3(11):2746–2757. doi:10.1063/1.858164

    Google Scholar 

  12. Nmira F, Consalvi J, Kaiss A, Fernandezpello A, Porterie B (2009) A numerical study of water mist mitigation of tunnel fires. Fire Saf J 44(2):198–211. doi:10.1016/j.firesaf.2008.06.002

    Google Scholar 

  13. Prahl L, Holzer A, Arlov D, Revstedt J, Sommerfeld M, Fuchs L (2007) On the interaction between two fixed spherical particles. Int J Multiph Flow 33(7):707–725. doi:10.1016/j.ijmultiphaseflow.2007.02.001

    Google Scholar 

  14. Prahl L, Jadoon A, Revstedt J (2009) Interaction between two spheres placed in tandem arrangement in steady and pulsating flow. Int J Multiph Flow 35(10):963–969. doi:10.1016/j.ijmultiphaseflow.2009.05.001

    Article  Google Scholar 

  15. Prasad K, Li C, Kailasanath K (1999) Simulation of water mist suppression of small scale methanol liquid pool fires. Fire Sa J 33(3):185–212. doi:10.1016/S0379-7112(99)00028-4

    Article  Google Scholar 

  16. Prasad K, Patnaik G, Kailasanath K (2002) A numerical study of water–mist suppression of large scale compartment fires. Fire Saf J 37(6):569–589. doi:10.1016/S0379-7112(02)00004-8

    Article  Google Scholar 

  17. Ramírez-Muñoz J, Soria A, Salinas-Rodríguez E (2007) Hydrodynamic force on interactive spherical particles due to the wake effect. Int J Multiph Flow 33(7):802–807. doi:10.1016/j.ijmultiphaseflow.2006.12.009

    Article  Google Scholar 

  18. Shimizu H, Tsuzuki M, Yamazaki Y, Koichi Hayashi A (2001) Experiments and numerical simulation on methane flame quenching by water mist. J Loss Prev Process Ind 14(6):603–608. doi:10.1016/S0950-4230(01)00055-9

    Article  Google Scholar 

  19. Vaari J, Hostikka S, Sikanen T and Paajanen A (2012) Numerical simulations on the performance of water-based fire suppression systems VTT TECHNOLOGY 54, http://www.vtt.fi/inf/pdf/technology/2012/T54.pdf. Accessed 12 Jan 2013

  20. Vreman AW (2004) An Eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys Fluids. 16:3670. doi:10.1063/1.1785131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Topi Sikanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikanen, T., Vaari, J., Hostikka, S. et al. Modeling and Simulation of High Pressure Water Mist Systems. Fire Technol 50, 483–504 (2014). https://doi.org/10.1007/s10694-013-0335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-013-0335-8

Keywords

Navigation