Torero JL (2011) Challenging attitudes on codes and safety. CTBUH J 2011(3,Special edn):36–37
Google Scholar
Lamster M (2011) Castles in the air. Sci Am (special issue) doi:10.1038/scientificamerican0911-76.
FEMA (2002) World Trade Center Building performance study: data collection, preliminary observations and recommendations. Technical Report 403. Washington, DC.
Sunder SS, Gann RG, Grosshandler WL et al (2006) Federal building and fire safety investigation of the World Trade Center disaster: final report of the national construction safety team on the collapses of the World Trade Center towers. NIST, Gaithersburg 1
Google Scholar
(2012) Summary of the structural design of the WTC buildings. Fire Technol (WTC special issue, in press).
(2012) Summary NIST findings on aircraft damage. Fire Technol (WTC special issue, in press).
Summary of NIST findings on fire dynamics in WTC 1&2 “Fire Technology 2012, WTC special issue (in press).
(2012) Summary of NIST findings on fire damage on WTC 1,2 &7″) plus. Fire Technol (WTC special issue, in press).
Quintiere JG, diMarzo M, Becker R (2002) A suggested cause of the fire-induced collapse of the World Trade Towers. Fire Saf J 37(7):707–716. doi:10.1016/S0379-7112(02)00034-6
Article
Google Scholar
Usmani AS, Chung YC, Torero JL (2003) How did the WTC towers collapse? A new theory. Fire Saf J 38(6):501–591. doi:10.1016/S0379-7112(03)00069-9
Article
Google Scholar
Kodur (2003) Role of fire resistance issues in the collapse of the Twin Towers. In: Proceedings of the CIB-CTBUH conference on tall buildings, 20–23 October, Kuala Lumpur, Malaysia
Usmani AS (2005) Stability of the World Trade Center Twin Towers structural frame in multiple floor fires. J Eng Mech 131(6):654–657. doi:10.1061/(ASCE)0733-9399(2005)131:6(654)
Article
Google Scholar
Flint G, Usmani A, Lamont S, Lane B, Torero J (2007) Structural response of tall buildings to multiple floor fires. J Struct Eng 133(12):1719–1732. doi:10.1061/(ASCE)0733-9445(2007)133:12(1719)
Article
Google Scholar
Baum HR (2005) Simulating fire effects on complex building structures. Fire Saf Sci 8:3–18. doi:10.3801/IAFSS.FSS.8-3
Article
Google Scholar
Ali F, O’Connor D (2001) Structural performance of rotationally restrained steel columns in fire. Fire Saf J 36(7):679–691. doi:10.1016/S0379-7112(01)00017-0
Article
Google Scholar
Franssen JM (2000) Failure temperature of a system comprising a restrained column submitted to fire. Fire Saf J 34:191–207. doi:10.1016/S0379-7112(99)00047-8
Article
Google Scholar
Huang ZF, Tan KH, Ting SK (2006) Heating rate and boundary restraint effects on fire resistance of steel columns with creep. Eng Struct 28(6):805–817. doi:10.1016/j.engstruct.2005.10.009
Article
Google Scholar
Shepherd PG, Burgess IW (2011) On the buckling of axially restrained steel columns in fire. Eng Struct 33(10):2832–2838. doi:10.1016/j.engstruct.2011.06.007
Article
Google Scholar
Quiel ES, Garlock MEM (2010) Parameters for modeling a high-rise steel building frame subject to fire. J Struct Fire Eng 1(2):115–134. doi:10.1260/2040-2317.1.2.115
Article
Google Scholar
Torero JL (2011) Forensic analysis of fire induced structural failure: the world trade centre, New York. ICE J Forensic Eng 164(2):69–77
Article
Google Scholar
Usmani A, Roben C, Al-Remal A (2009) A very simple method for assessing tall building safety in major fires. Int J Steel Struct 9(1):1–15
Article
Google Scholar
Weingardt R (2005) Engineering legends. Am Soc Civil Eng. doi:10.1061/(ASCE)1532-6748(2001)1:1(58)
Google Scholar
(2011) Opensees Software, University of California, Berkeley, http://opensees.berkeley.edu/index.php.Accessed 11 September 2011.
McKenna FT (1997) Object-oriented finite element programming: frameworks for analysis. Algorithms and parallel computing. Dissertation, University of California, Berkeley
Google Scholar
Usmani A, Zhang J, Jiang J, Jiang Y, Kotsovinos P, May I, Zhang J (2010) Using OpenSees for structures in fire. In: Proceedings of international conference on structures in fire, 2–4 June, Michigan, USA
Neuenhofer A, Filippou FC (1998) Geometrically nonlinear flexibility-based frame finite element. J Struct Eng ASCE 124:704–711. doi:10.1061/(ASCE)0733-9445(1998)124:6(704)
Article
Google Scholar
M de Souza R (2000) Force-based finite element for large displacement inelastic analysis of frames. Dissertation, University of California, Berkeley
Google Scholar
Spacone E, Ciampi V, Filippou FC (1996) Mixed formulation of nonlinear beam finite element. Comput Struct 58:71–83. doi:10.1016/0045-7949(95)00103-N
MATH
Article
Google Scholar
Spacone E, El-Tawil S (2004) Nonlinear analysis of steel concrete composite structures: state of the art. J Struct Eng 130(2):159–168. doi:10.1061/(ASCE)0733-9445(2004)130:2(159)
Article
Google Scholar
Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5:283–292. doi:10.1002/eqe.4290050306
Article
Google Scholar