Skip to main content
Log in

Mechanistic Approach to Structural Fire Modeling of Composites

  • Published:
Fire Technology Aims and scope Submit manuscript

Absrtract

In this paper, a framework is presented for the modeling of the response of structural composites subjected to combined mechanical loading and fire. An emphasis is placed on the response of composites at temperatures below the decomposition temperature, where the viscoelastic response of the composite material becomes important. Material property characterization results are presented for an E-glass reinforced vinyl ester composite typical of that used for naval ship applications. Time-temperature equivalence is used in a compression strength model to predict the time to failure of composites subjected to isothermal compression loading (compression creep rupture failure). These predictions are compared with experimentally determined times to failure with good agreement. In particular, shift factors obtained from shear compliance testing are able to collapse the compression creep rupture data at different temperatures, indicating that viscolelasticity is the dominant mechanism driving the failure. This model is combined with a standard diffusion model for heat transfer in the composite to predict the time-dependent failure of composites subjected to simultaneous one-sided heat flux and compression loading. Predicted times to failure are compared with experimental results with good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58

Similar content being viewed by others

References

  1. McGrattan K, Hostikka S, Floyd J (2007) Fire Dynamics Simulator (Version 5) User’s Guide. National Institute of Standards and Technology Special Publication 1019-5. http://fds-smv.googlecode.com/svn/trunk/FDS/trunk/Manuals/All_PDF_Files/FDS_5_User_Guide.pdf. Accessed December 15, 2009

  2. Budiansky B, and Fleck NA (1993). “Compressive Failure Of Fiber Composites.” J. Mech. Phys. Solids, 41(1), 183-211

    Article  Google Scholar 

  3. http://www.hotdiskinstruments.com/home/technology.html. Accessed December 15, 2009

  4. Log T, and Gustafsson SE (1995). “Transient Plane Source (TPS) Technique for Measuring Thermal Transport Properties of Building Materials.” Fire and Materials, 19, 43-49

    Article  Google Scholar 

  5. Lattimer BY, Ouellette J (2006) Properties of composite materials for thermal analysis involving fires. Compos A Appl Sci Manuf 37(7):1068–1081

    Article  Google Scholar 

  6. Lattimer B, Ouellette J, and Sorathia U (2004) Large-scale fire resistance tests on sandwich composites. SAMPE, Long Beach, CA

  7. Schapery RA (1966) A theory of non-linear thermoviscoelasticity based on irreversible thermodynamics. Proc 5th US Nat Cong Appl Mech, ASME 511-530

  8. Schapery RA (1969). “On the Characterization of Nonlinear Viscoelastic Materials.” Polym. Eng. Sci., 9(4), 295-310

    Article  Google Scholar 

  9. Lou YC, and Schapery RA (1971). “Viscoelastic Characterization of a Nonlinear Fiber-Reinforced Plastic.” Journal of Composite Materials, 5, 208-234

    Article  Google Scholar 

  10. Peretz D (1982). “Non-Linear Viscoelastic Characterization Of Fm-73 Adhesive.” J. Rheol., 26(3), 245-261

    Article  Google Scholar 

  11. Tuttle ME, and Brinson HF (1986). “Prediction Of The Long-Term Creep Compliance Of General Composite Laminates.” Exp. Mech., 26(1), 89-102

    Article  Google Scholar 

  12. Xiao X (1989). “Studies Of The Viscoelastic Behavior Of A Thermoplastic Resin Composite.” Compos. Sci. Technol., 34(2), 163-182

    Article  Google Scholar 

  13. Xiao XR, Hiel CC, and Cardon AH (1994). “Characterization And Modeling Of Nonlinear Viscoelastic Response Of Peek Resin And Peek Composites.” Compos. Eng., 4(7), 681-702

    Article  Google Scholar 

  14. Tuttle ME, Pasricha A., and Emery AF (1995). “The Nonlinear Viscoelastic-Viscoplastic Behavior Of Im7/5260 Composites Subjected To Cyclic Loading.” Journal Of Composite Materials, 29(15), 2025-2046

    Article  Google Scholar 

  15. Peretz D, and Weitsman Y (1983). “The Non-Linear Thermoviscoelastic Characterizations Of Fm-73 Adhesives.” J. Rheol., 27(2), 97-114

    Article  Google Scholar 

  16. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. John Wiley and Sons, New York

    Google Scholar 

  17. Guedes RM, Morais JJL, Marques AT, and Cardon AH (2000). “Prediction of long-term behaviour of composite materials.” Comput. Struct., 76(1-3), 183-194

    Article  Google Scholar 

  18. Crissman JM, and Zapas LJ (1985). On The Mechanical Preconditioning Of Ultrahigh-Molecular-Weight Polyethylene At Small Uniaxial Deformations.” J. Polym. Sci. Pt. B-Polym. Phys., 23(12), 2599-2610

    Google Scholar 

  19. Pasricha A, Tuttle ME, and Emery AF (1996). “Time-dependent response of IM7/5260 composites subjected to cyclic thermo-mechanical loading.” Compos. Sci. Technol., 56(1), 55-62

    Article  Google Scholar 

  20. Bausano JV, Lesko JJ, and Case SW (2006). Composite life under sustained compression and one sided simulated fire exposure: Characterization and prediction. Composites Part A: Applied Science and Manufacturing, 37(7), 1092-1100

    Article  Google Scholar 

  21. Leaderman H (1958). In: Eirich FR (ed), Rheology. Academic Press, New York

  22. Boyd SE, Lesko JJ, and Case SW (2007). “Compression Creep Rupture Behavior of a Glass/vinyl ester Composite Laminate Subject to Fire Loading Conditions.” Composites Science and Technology, 67(15-16), 3187-3195

    Article  Google Scholar 

  23. Hiel C, Cardon AH, and Brinson HF (1984) Nonlinear viscoelastic response of resin matrix composite laminates, NASA Contractor Report. NASA Cr. 149 p

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Case.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, S.E., Bausano, J.V., Case, S.W. et al. Mechanistic Approach to Structural Fire Modeling of Composites. Fire Technol 47, 941–983 (2011). https://doi.org/10.1007/s10694-009-0122-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-009-0122-8

Keywords

Navigation