Skip to main content
Log in

Systematic Analysis of the Deformational Properties of Polypropylene and Polyvinylidene Fluoride Surgical Materials

  • Published:
Fibre Chemistry Aims and scope

A systematic analysis is given for the deformational properties of polypropylene and polyvinylidene fluoride surgical thread used in the preparation of endoprostheses. We established the extent of the effect of the thread properties on the characteristics of derived mesh endoprostheses, which suggests approaches for improving the properties of such devices. The elasticity of endoprostheses is basically a function of their mesh structure, which remains proportional to the thread elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. G. Makarov, G. Y. Slutsker, et al., Physics Solid State, 58, No.4, 840-846 (2016), https://doi.org/10.1134/S1063783416040132.

  2. A. G. Makarov, G. Y. Slutsker, and N. V. Drobotun, Techn. Phys., 60, No. 2, 240--245 (2015), https://doi.org/10.1134/S1063784215020152.

    Article  CAS  Google Scholar 

  3. G. Y. Slutsker, V. A. Zhukovskii, et al., Fibre Chemistry, 44, No. 5, 288-292 (2013), https://doi.org/10.1007/s10692%2D%2D013-9448-6.

  4. V. A. Zhukovskii, A. G. Makarov, et al., Fibre Chemistry, 40, No. 4, 318-321 (2008), https://doi.org/10.1007/s10692-009-9069-2.

    Article  CAS  Google Scholar 

  5. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 6, 467-470 (2020), https://doi.org/10.1007/s10692-020-10136-3.

    Article  CAS  Google Scholar 

  6. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 6, 471--474 (2020), https://doi.org/10.1007/s10692-020%2D%2D10137-2.

  7. N. V. Pereborova, A. G. Makarov, et al., Vestnik of Saint Petersburg State University of Technologies and Design, Ser. 4. Industrial Technologies, No. 1, 53-64 (2020), https://doi.org/10.46418/2619-0729-_2020_1_7.

  8. A. G. Makarov, N. V. Pereborova, et al., Fibre Chemistry, 50, No. 3, 239--242 (2018), https://doi.org/10.1007/s-10692-018-9968-1.

    Article  CAS  Google Scholar 

  9. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 6, 487-490 (2019), https://doi.org/10.1007/s10692-019-10015-6.

    Article  CAS  Google Scholar 

  10. N. V. Pereborova, A. G. Makarov, et al., Izv. VUZ, Tekhnol. Tekst. Prom., 375, No. 3, 253-257 (2018), eid=2-s2.0-85059766891.

  11. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 4, 306-309 (2018), https://doi.org/10.1007/s10692-019-09981-8.

    Article  CAS  Google Scholar 

  12. I. M. Egorov, A. G. Makarov, et al., Vestnik of Saint Petersburg State University of Technologies and Design, Ser. 4, Industrial Technologies, No. 1, 65-74 (2020), https://doi.org/10.46418/2619-0729_2020_1_8.

  13. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 5, 468-472 (2019), https://doi.org/10.1007/s10692-019-10010-x.

    Article  CAS  Google Scholar 

  14. P. P. Rymkevich, A. A. Romanova, et al., J. Macromol. Sci., Part B, Physics, 52, No. 12, 1829-1847 (2013), https://doi.org/10.1080/00222348.2013.808906.

  15. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 6, 569-572 (2019), https://doi.org/10.1007/s10692-019-10030-7.

    Article  CAS  Google Scholar 

  16. N. V. Pereborova, A. G. Makarov, et al., Izv. VUZ, Tekhnol. Tekst. Prom., 378, No. 6, 267-272 (2018), eid=2-s2.0-85072335464.

  17. N. V. Pereborova, A. V. Demidov, et al., Izv. VUZ, Tekhnol. Tekst. Prom., 374, No. 2, 251--255 (2018), eid=2-s2.0-85056451197.

  18. N. V. Pereborova, V. I. Wagner, et al., Vestnik of Saint Petersburg State University of Technologies and Design, Ser. 4, Industrial Technologies, No. 1, 89-100 (2020), https://doi.org/10.46418/2619-0729_2020_1_12.

  19. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ, Tekhnol. Tekst. Prom., 368, No. 2, 309-313 (2017), eid=2-s2.0-85035207042.

  20. A. V. Demidov, A. G. Makarov, et al., Izv. VUZ, Tekhnol. Tekst. Prom., 367, No. 1, 250-258 (2017), eid=2-s2.0-85033239149.

  21. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ, Tekhnol. Tekst. Prom., 370, No. 4, 287-292 (2017), eid=2-s2.0-85057142312.

  22. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 5, 397-400 (2020), https://doi.org/10.1007/s10692-020-10119-4.

    Article  CAS  Google Scholar 

  23. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 5, 401--403 (2020), https://doi.org/10.1007/s10692-020%2D%2D10120-x.

  24. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ Tekhnol. Tekst. Prom., 354, No. 6, 120-124 (2014), eid=2-s2.0-84937439497.

  25. A. V. Demidov, A. G. Makarov, et al., Izv. VUZ Tekhnol. Tekst. Prom., 293, No. 5, 21-25 (2006), eid=2-s2.0-34247548784.

  26. A. V. Demidov, A. G. Makarov, et al., Mechan. Solids, 44, No. 1, 122-130 (2009), https://doi.org/10.3103/S0025654409010130.

    Article  Google Scholar 

  27. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ Tekhnol. Tekst. Prom., 351, No. 3, 110-115 (2014), eid=2--s2.0-84937410003.

  28. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, av. VUZ Tekhnol. Tekst. Prom., 297, No. 2, 14-17 (2007), eid=2-s2.0-38849203122.

  29. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 52, No. 3, 135-140 (2020), https://doi.org/10.1007/s10692%2D%2D020-10168-9.

  30. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 52, No. 3, 154-159 (2020), https://doi.org/10.1007/s10692%2D%2D020-10171-0.

  31. A. V. Demidov, N. V. Pereborova, et al., Fibre Chemistry, 52, No. 3, 164-167 (2020), https://doi.org/10.1007/s10692-020-10173-y.

    Article  CAS  Google Scholar 

  32. A. V. Demidov, A. G. Makarov, et al., Izv. VUZ Tekhnol. Tekst. Prom., 292, No. 4, 9-13 (2006), eid=2-s2.0-33845499474.

  33. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ Tekhnol. Tekst. Prom., 291, No. 3, 13-17 (2006), eid=2-s2.0-37849188658.

  34. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ Tekhnol. Tekst. Prom., 294, No. 6, 15-18 (2006), eid=2-s2.0-34250009041.

  35. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, J. Appl. Mechan. Techn. Phys., 48, No. 6, 897-904 (2007), https://doi.org/10.1007/s10808-007-0114-8.

    Article  Google Scholar 

  36. A. M. Stalevich and A. G. Makarov, Izv. VUZ Tekhnol. Tekst. Prom., 270, No. 1, 16-22 (2003), eid=2-s2.0-2642532049.

  37. A. G. Makarov, Izv. VUZ Tekhnol. Tekst. Prom., 266, No. 2, 13-17 (2002), eid=2-s2.0-0036931214.

  38. A. M. Stalevich and A.G. Makarov. Izv. VUZ Tekhnol. Tekst. Prom., 267, No. 3, 10-13 (2002), eid=2-s2.0-0038128574.

  39. A. M. Stalevich, A. G. Makarov, and E. D. Saidov, Izv. VUZ Tekhnol. Tekst. Prom., 268, Nos. 4-5, 15-18 (2002), eid=2-s2.0-0037742684.

  40. N. V. Pereborova, A. V. Demidov, et al., Fibre Chemistry, 50, No. 2, 104-107 (2018), https://doi.org/10.1007/s10692-018-9941-z.

    Article  CAS  Google Scholar 

  41. A. G. Makarov, A. V. Demidov, et al., Fibre Chemistry, 50, No. 4, 378-382 (2018), https://doi.org/10.1007/s10692-019-09993-4.

    Article  CAS  Google Scholar 

  42. A. S. Gorshkov, A. G. Makarov, et al., Mag. Civil Eng., 44, No. 9, 76-83, 103-104 (2013), https://doi.org/10.5862/MCE.44.10.

  43. A. G. Makarov, A. V. Demidov, et al., Izv. VUZ Tekhnol. Tekst. Prom., 360, No. 6, 194-205 (2015), eid=2-s2.0-84976560627.

  44. A. V. Demidov and A. G. Makarov, Izv. VUZ Tekhnol. Tekst. Prom., 298, No. 3, 11-14 (2007), eid=2-s2.0-34648822922.

  45. A. M. Stalevich and A. G. Makarov, Izv. VUZ Tekhnol. Tekst. Prom., 255, No. 3, 8-12 (2000), eid=2-s2.0-0034436083.

  46. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ Tekhnol. Legk. Prom., 3 10 . 14.ich, A. G23, No. 1, 24-29 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Makarov.

Additional information

Translated from Khimicheskie Volokna, Vol. 53, No. 2. pp. 64-69, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vagner, V.I., Kozlov, A.A., Makarov, A.G. et al. Systematic Analysis of the Deformational Properties of Polypropylene and Polyvinylidene Fluoride Surgical Materials. Fibre Chem 53, 120–126 (2021). https://doi.org/10.1007/s10692-021-10251-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10251-9

Navigation