Skip to main content

Advertisement

Log in

Spectral Interpretation of Relaxation Processes of Polymer Fiber Materials

  • Published:
Fibre Chemistry Aims and scope

The distribution of relaxation times in polymeric fibrous materials was studied on the basis of a mathematical model of the relaxation process. The relaxation times characterize the times of transition of the “relaxing” particles of the polymer macromolecules from one stable energy state to another. The character of such transitions is due both to the rheology of the polymeric material and to the magnitude of the applied deformation or load. It can be explained, on the one hand, by conformational energy transitions within the macromolecules of the material when their shape changes during rearrangement and, on the other, by shifts of the macromolecules in relation to each other or by other changes caused by energy changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. G. Makarov, G. Y. Slutsker, et al., Physics Solid State, 58, No. 4, 840-846 (2016). https://doi.org/10.1134/S1063783416040132.

    Article  CAS  Google Scholar 

  2. A. G. Makarov, G. Y. Slutsker, N. V. Drobotun, Techn. Phys., 60, No. 2, 240-245 (2015). https://doi.org/10.1134/S1063784215020152.

    Article  CAS  Google Scholar 

  3. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 5, 397-400 (2020). https://doi.org/10.1007/s10692-020-10119-4.

    Article  CAS  Google Scholar 

  4. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 5, 401-403 (2020). https://doi.org/10.1007/s10692-020-10120-x.

    Article  CAS  Google Scholar 

  5. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 6, 467-470 (2020). https://doi.org/10.1007/s10692-020-10136-3.

    Article  CAS  Google Scholar 

  6. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 6, 471-474 (2020). https://doi.org/10.1007/s10692-020-10137-2

    Article  CAS  Google Scholar 

  7. N. V. Pereborova, A. G. Makarov, et al., Vestnik of Saint Petersburg State University of Technologies and Design. Ser. 4. Industrial Technologies, No. 1, 53-64 (2020). https://doi.org/10.46418/2619-0729_2020_1_7

  8. A. G. Makarov, N. V. Pereborova, et al., Fibre Chemistry, 50, No. 3, 239-242 (2018). https://doi.org/10.1007/s10692-018-9968-1.

    Article  CAS  Google Scholar 

  9. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 6, 487-490 (2019). https://doi.org/10.1007/s10692-019-10015-6.

    Article  CAS  Google Scholar 

  10. N. V. Pereborova, A. G. Makarov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 375, No. 3, 253-257 (2018). eid=2-s2.0-85059766891.

  11. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 4, 306-309 (2018). https://doi.org/10.1007/s10692-019-09981-8.

    Article  CAS  Google Scholar 

  12. I. M. Egorov, A. G. Makarov, et al., Vestnik of Saint Petersburg State University of Technologies and Design. Ser. 4. Industrial Technologies, No. 1, 65-74 (2020). https://doi.org/10.46418/2619-0729_2020_1_8.

  13. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 5, 468-472 (2019). https://doi.org/10.1007/s10692-019-10010-x.

    Article  CAS  Google Scholar 

  14. P. P. Rymkevich, A. A. Romanova, et al., J. Macromol. Sci. Part B: Physics, 52 (12), 1829-1847 (2019). https://doi.org/10.1080/00222348.2013.808906.

    Article  CAS  Google Scholar 

  15. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 6, 569-572 (2019). https://doi.org/10.1007/s10692-019-10030-7.

    Article  CAS  Google Scholar 

  16. N. V. Pereborova, A. G. Makarov, et al., Izv. VUZ. Teknol. Tekst. Prom., 378, No. 6, 267-272 (2018). eid =2-s2.0-85072335464.

  17. N. V. Pereborova, A. V. Demidov, et al., Izv. VUZ. Teknol. Tekst. Prom., 374, No. 2, 251-255 (2018). eid=2-s2.0-85056451197.

  18. N. V. Pereborova, V. I. Wagner et al., Vestnik of Saint Petersburg State University of Technologies and Design. Ser. 4. Industrial Technologies, No. 1, 89-100 (2020). https://doi.org/10.46418/2619-0729_2020_1_12.

  19. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Teknol. Tekst. Prom., 368, No. 2, 309-313 (2017). eid=2-s2.0-85035207042.

  20. A. V. Demidov, A. G. Makarov, et al., Izv. VUZ. Teknol. Tekst. Prom., 367, No. 1, 250-258 (2017). eid=2-s2.0-85033239149.

  21. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Teknol. Tekst. Prom., 370, No. 4, 87-292 (2017). eid=2-s2.0-85057142312.

  22. N. V. Pereborova, Vestnik of Saint Petersburg State University of Technologies and Design. Ser. 4. Industrial Technologies, No. 1, 101-110 (2020). https://doi.org/10.46418/2619-0729_2020_1_13.

  23. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Teknol. Tekst. Prom., 359, No. 5, 48-58 (2015). eid=2-s2.0-84971636036.

  24. A. G. Makarov, N. V Pereborova, et al., Izv. VUZ. Teknol. Tekst. Prom., No. 6, 120-124 (2014). eid=2-s2.0-84937439497.

  25. A. V. Demidov, A. G. Makarov, et al., Izv. VUZ. Teknol. Tekst. Prom., 293, No. 5, 21-25 (2006). eid=2-s2.0-34247548784.

  26. A. V. Demidov, A. G. Makarov, et al., Mechan. Solids, 44, No. 1, 122-130 (2009). https://doi.org/10.3103/S0025654409010130.

    Article  Google Scholar 

  27. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Teknol. Tekst. Prom., 351, No. 3, 110-115 (2014). eid=2-s2.0-84937410003.

  28. A. V. Demidov, A. G. Makarov, A. M. Stalevich, Izv. VUZ. Teknol. Tekst. Prom., 297, No. 2, 14-17 (2007). eid=2-s2.0-38849203122.

  29. A. G. Makarov, K. N. Busygin, Vestnik of Saint Petersburg State University of Technologies and Design. Ser. 4. Industrial Technologies, No. 2, 84-94 (2020). https://doi.org/10.46418/2619-0729_2020_2_10.

  30. A. V. Demidov, A. G. Makarov, et al., Izv. VUZ. Teknol. Tekst. Prom., 292, No. 4, 9-13 (2006). eid=2-s2.0-33845499474.

  31. A. V. Demidov, A. G. Makarov, A. M. Stalevich, Izv. VUZ. Teknol. Tekst. Prom., 291. No. 3, 13-17(2006). eid=2-s2.0-37849188658.

  32. A. V. Demidov, A. G. Makarov, A. M. Stalevich, Izv. VUZ. Teknol. Tekst. Prom., 294, No. 6, 15-18 (2006). eid=2-s2.0-34250009041.

  33. A. V. Demidov, A. G. Makarov, A. M. Stalevich, J. Appl. Mechan. a. Techn. Phys., 48, No. 6, 897-904 (2007). https://doi.org/10.1007/s10808-007-0114-8.

    Article  Google Scholar 

  34. A. M. Stalevich, A. G. Makarov, Izv. VUZ. Teknol. Tekst. Prom., 270, No. 1, 16-22 (2003). eid=2-s2.0-2642532049.

  35. A. G. Makarov, Izv. VUZ. Teknol. Tekst. Prom., 266, No. 2, 13-17 (2002). eid=2-s2.0-0036931214.

  36. A. M. Stalevich, A. G. Makarov, Izv. VUZ. Teknol. Tekst. Prom., 267, No. 3, 10-13 (2002). eid=2-s2.0-0038128574.

  37. A. M. Stalevich, A. G. Makarov, E. D. Saidov, Izv. VUZ. Teknol. Tekst. Prom., 268, No. 4-5, 15-18 (2002). eid=2-s2.0-0037742684.

  38. A. M. Stalevich, A. G. Makarov, Izv. VUZ. Teknol. Tekst. Prom., 255, No. 3, 8-12 (2000). eid=2-s2.0-0034436083

  39. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Teknol. Tekst. Prom., 23, No. 1, 24-29 (2014).

    Google Scholar 

  40. N. V. Pereborova, A. V. Demidov, et al., Fibre Chemistry, 50, No. 2, 104-107 (2018). https://doi.org/10.1007/s10692-018-9941-z.

    Article  CAS  Google Scholar 

  41. A. G. Makarov, N. V. Pereborova, et al., Fibre Chemistry, 50, No. 4, 378-382 (2018). https://doi.org/10.1007/s10692-019-09993-4.

    Article  CAS  Google Scholar 

  42. A. S. Gorshkov, A. G. Makarov, et al., Mag. Civil Eng., 44, No. 9, 76-83+103-104 (2013). https://doi.org/10.5862/MCE.44.10.

  43. A. G. Makarov, A. V. Demidov, et al., Izv. VUZ. Teknol. Tekst. Prom., 360, No. 6, 194-205 (2015). eid=2-s2.0-84976560627.

  44. A. V. Demidov, A. G. Makarov, A. M. Stalevich, Izv. VUZ. Teknol. Tekst. Prom. 298, No. 3, 11-14 (2007). eid=2-s2.0-34648822922.

Download references

The work was financed within the framework of the fulfilment of a state assignment from the Ministry of Science and Higher Education of the Russian Federation. Project No. FSEZ-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Makarov.

Additional information

Translated from Khimicheskie Volokna, No. 2, pp. 44-48, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, S.V., Pereborova, N.V. & Makarov, A.G. Spectral Interpretation of Relaxation Processes of Polymer Fiber Materials. Fibre Chem 53, 100–105 (2021). https://doi.org/10.1007/s10692-021-10247-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10247-5

Navigation