Skip to main content
Log in

Separation of Deformation Components in Polymer Textile Materials

  • Published:
Fibre Chemistry Aims and scope

The deformation occurring in polymeric textile materials can be conditionally separated into three components: elastic, highly elastic, and plastic. However, distinguishing between total deformation components is considered a difficult task due to their simultaneous occurrence and subsequent development. Thus, in order to obtain information on the distribution of material particles in relaxation and retardation times, a physically substantiated analytical description of the rheology of polymeric materials in combination with the measurement of deformation processes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.G. Makarov, G.Y. Slutsker, et al., Physics Solid State, 58, No 4, 840-846 (2016) DOI: https://doi.org/10.1134/S1063783416040132

    Article  CAS  Google Scholar 

  2. A.G. Makarov, G.Y. Slutsker, and N.V. Drobotun, Techn. Phys., 60, No 2, 240-245 (2015). DOI: https://doi.org/10.1134/S1063784215020152

    Article  CAS  Google Scholar 

  3. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 50, No 4, 306-309 (2018). DOI: https://doi.org/10.1007/s10692-019-09981-8

    Article  CAS  Google Scholar 

  4. A.G. Makarov, N.V. Pereborova,, et al., Fibre Chemistry, 50, No 4, 378-382 (2018). DOI: https://doi.org/10.1007/s10692-019-09993-4

    Article  CAS  Google Scholar 

  5. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 51, No 5, 397-400 (2020). DOI: https://doi.org/10.1007/s10692-020-10119-4

    Article  CAS  Google Scholar 

  6. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 51, No 5, 401-403 (2020). DOI: https://doi.org/10.1007/s10692-020-10120-x

    Article  CAS  Google Scholar 

  7. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 51, No 6, 467-470 (2020). DOI: https://doi.org/10.1007/s10692-020-10136-3

    Article  CAS  Google Scholar 

  8. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 51, No 6, 471-474 (2020). DOI: https://doi.org/10.1007/s10692-020-10137-2

    Article  CAS  Google Scholar 

  9. N.V. Pereborova, A.V. Demidov, et al., Fibre Chemistry, 50, No 2, 104-107 (2018). DOI: https://doi.org/10.1007/s10692-018-9941-z

    Article  CAS  Google Scholar 

  10. A.G. Makarov, N.V. Pereborova, et al., Fibre Chemistry, 50, No 3, 239-242 (2018). DOI: https://doi.org/10.1007/s10692-018-9968-1

    Article  CAS  Google Scholar 

  11. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 50, No 6, 487-490 (2019). DOI: https://doi.org/10.1007/s10692-019-10015-6

    Article  CAS  Google Scholar 

  12. N.V. Pereborova, A.G. Makarov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 375, No 3, 253-257 (2018). eid=2-s2.0-85059766891

  13. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 50, No 5, 468-472 (2019). DOI https://doi.org/10.1007/s10692-019-10010-x.

    Article  CAS  Google Scholar 

  14. P.P. Rymkevich, A.A. Romanova, et al., J. Macromol. Sci. Part B: Physics, 52(12), 1829-1847 (2013). DOI: https://doi.org/10.1080/00222348.2013.808906.

    Article  CAS  Google Scholar 

  15. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 50, No 6, 569-572 (2019). DOI: https://doi.org/10.1007/s10692-019-10030-7.

    Article  CAS  Google Scholar 

  16. N.V. Pereborova, A.G. Makarov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 378, No 6, 267-272 (2018). eid =2-s2.0-85072335464

  17. N.V. Pereborova, A.V. Demidov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 374, No 2, 251-255 (2018). eid=2-s2.0-85056451197

  18. A.S. Gorshkov, A.G. Makarov, et al., Mag. Civil Eng., 44, No 9, 76-83 + 103-104 (2013). DOI: https://doi.org/10.5862/MCE.44.10

  19. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 368, No 2, 309-313 (2017). eid=2-s2.0-85035207042

  20. A.V. Demidov, A.G. Makarov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 367, No 1, 250-258 (2017). eid=2- 2.0-85033239149

  21. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 370, No 4, 287-292 (2017). eid=2-s2.0-85057142312

  22. A.G. Makarov, A.V. Demidov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 360, No 6, 194-205 (2015). eid=2-s2.0-84976560627

  23. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 359, No 5, 48-58 (2015). eid=2-s2.0-84971636036

  24. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 354, No 6, 120-124 (2014). eid=2-s2.0-84937439497

  25. A.V. Demidov, A.G. Makarov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 293, No 5, 21-25 (2006). eid=2-s2.0-34247548784

  26. A.V. Demidov, A.G. Makarov, et al., Mechan. Solids, 44, No 1, 122-130 (2009). DOI: https://doi.org/10.3103/S0025654409010130

    Article  Google Scholar 

  27. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 351, No 3, 110-115 (2014). eid=2-s2.0-84937410003

  28. A.V. Demidov, A.G. Makarov, and A.M. Stalevich, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 297, No 2, 14-17 (2007). eid=2-s2.0-38849203122

  29. A.V. Demidov, A.G. Makarov, and A.M. Stalevich, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 298, No 3, 11-14 (2007). eid=2-s2.0-34648822922

  30. A.V. Demidov, A.G. Makarov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 292, No 4, 9-13 (2006). eid=2-s2.0-33845499474

  31. A.V. Demidov, A.G. Makarov, and A.M. Stalevich, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 291, No 3, 13-17 (2006). eid=2-s2.0-37849188658

  32. A.V. Demidov, A.G. Makarov, and A.M. Stalevich, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 294, No 6, 15-18 (2006). eid=2-s2.0-34250009041

  33. A.V. Demidov, A.G. Makarov, and A.M. Stalevich, J. Appl. Mechan. and Techn. Phys., 48, No 6, 897-904 (2007). DOI: https://doi.org/10.1007/s10808-007-0114-8

    Article  Google Scholar 

  34. A.M. Stalevich, A.G. Makarov, and E.D. Saidov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 270, No 1, 16-22 (2003). eid=2-s2.0-2642532049

  35. A.G. Makarov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 266, No 2, 13-17 (2002). eid=2-s2.0-0036931214

  36. A.M. Stalevich and A.G. Makarov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 267, No 3, 10-13 (2002). eid=2-s2.0-0038128574

  37. A.M. Stalevich, A.G. Makarov, and E.D. Saidov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 268, No 4-5, 15-18 (2002). eid=2-s2.0-0037742684

  38. A.M. Stalevich and A.G. Makarov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 255, No 3, 8-12 (2000). eid=2-s2.0-0034436083

  39. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 23, No 1, 24-29 (2014).

Download references

The study was financed within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation. Project No. FSEZ-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Buryak.

Additional information

Translated from. Khimicheskie Volokna, No. 2, pp. 34-37, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buryak, E.A., Klimova, N.S. & Pereborova, N.V. Separation of Deformation Components in Polymer Textile Materials. Fibre Chem 53, 88–93 (2021). https://doi.org/10.1007/s10692-021-10245-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10245-7

Navigation