Skip to main content

Advertisement

Log in

Activation Energy of Deformation Processes in Polymer Textile Materials

  • Published:
Fibre Chemistry Aims and scope

Energy estimates of nonlinear hereditary relaxation and creep processes are considered. Polymer materials possess pronounced rheological properties, including a flexible macromolecule chain structure combining an oriented state with an amorphous-crystalline structure at the supramolecular level. According to contemporary views of structural physicists, it is at this level that the rheological properties of polymers combining elasticity, viscoelasticity, and plasticity are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 51, No.5, 397-400 (2020). 10.1007/s10692-020-10119-4

  2. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 51, No.5, 401-403 (2020). 10.1007/s10692-020-10120-x

  3. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 51, No. 6, 467-470 (2020). https://doi.org/10.1007/s10692-020-10136-3

    Article  CAS  Google Scholar 

  4. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 51, No. 6, 471-474 (2020). https://doi.org/10.1007/s10692-020-10137-2

    Article  CAS  Google Scholar 

  5. N.V. Pereborova, A.V. Demidov, et al., Fibre Chemistry, 50, No. 2, 104-107 (2018). https://doi.org/10.1007/s10692-018-9941-z

    Article  CAS  Google Scholar 

  6. A.G. Makarov, N.V. Pereborova, et al., Fibre Chemistry, 50, No. 3, 239-242 (2018). https://doi.org/10.1007/s10692-018-9968-1

    Article  CAS  Google Scholar 

  7. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 50, No. 6, 487-490 (2019). https://doi.org/10.1007/s10692-019-10015-6

    Article  CAS  Google Scholar 

  8. N.V. Pereborova, A.G. Makarov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 375, No. 3, 253-257 (2018). eid=2-s2.0-85059766891

  9. A.G. Makarov, G.Y. Slutsker, et al., Physics of the Solid State, 58, No. 4, 840-846 (2016). https://doi.org/10.1134/S1063783416040132

    Article  CAS  Google Scholar 

  10. A.G. Makarov, G.Y. Slutsker, et al., Techn. Phys., 60, No. 2, 240-245 (2015). https://doi.org/10.1134/S1063784215020152

    Article  CAS  Google Scholar 

  11. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 50, No. 4, 306-309 (2018). https://doi.org/10.1007/s10692-019-09981-8

    Article  CAS  Google Scholar 

  12. A.G. Makarov, N.V. Pereborova, et al., Fibre Chemistry, 50, No. 4, 378-382 (2018). https://doi.org/10.1007/s10692-019-09993-4

    Article  CAS  Google Scholar 

  13. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 50, No. 5, 468-472 (2019). https://doi.org/10.1007/s10692-019-10010-x

    Article  CAS  Google Scholar 

  14. P.P. Rymkevich, A.A. Romanova, et al., J. Macromol. Sci. Part B: Phys., 52, No. 12, 1829-1847 (2013). https://doi.org/10.1080/00222348.2013.808906

    Article  CAS  Google Scholar 

  15. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, 50, No. 6, 569-572 (2019). https://doi.org/10.1007/s10692-019-10030-7

    Article  CAS  Google Scholar 

  16. N.V. Pereborova, A.G. Makarov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 378, No. 6, 267-272 (2018). eid=2-s2.0-85072335464

  17. N.V. Pereborova, A.V. Demidov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 374, No. 2, 251-255 (2018). eid=2-s2.0-85056451197

  18. A.S. Gorshkov, A.G. Makarov, et al., Mag. Civil Eng., 44, No. 9, 76-83+103-104 (2013). 10.5862/MCE.44.10

  19. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 368, No. 2, 309-313 (2017). eid=2-s2.0-85035207042

  20. A.V. Demidov, A.G. Makarov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 367, No. 1, 250-258 (2017). eid=2-s2.0-85033239149

  21. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 370, No. 4, 287-292 (2017). eid=2-s2.0-85057142312

  22. A.G. Makarov, A.V. Demidov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 360, No. 6, 194-205 (2015). eid=2-s2.0-84976560627

  23. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 359, No. 5, 48-58 (2015). eid=2-s2.0-84971636036

  24. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 354, No. 6, 120-124 (2014). eid=2-s2.0-84937439497

  25. A.V. Demidov, A.G. Makarov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 293, No. 5, 21-25 (2006). eid=2-s2.0-34247548784

  26. A.V. Demidov, A.G. Makarov, et al., Mechan. Solids, 44, No. 1, 122-130 (2009). https://doi.org/10.3103/S0025654409010130

    Article  Google Scholar 

  27. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 351, No. 3, 110-115 (2014). eid=2-s2.0-84937410003

  28. A.V. Demidov, A.G. Makarov, and A.M. Stalevich, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 297, No. 2, 14-17 (2007). eid=2-s2.0-38849203122

  29. A.V. Demidov, A.G. Makarov, and A.M. Stalevich, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 298, No. 3, 11-14 (2007). eid=2-s2.0-34648822922

  30. A.V. Demidov, A.G. Makarov, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 292, No. 4, 9-13 (2006). eid=2-s2.0-33845499474

  31. A.V. Demidov, A.G. Makarov, and A.M. Stalevich, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 291, No. 3, 13-17 (2006). eid=2-s2.0-37849188658

  32. A.V. Demidov, A.G. Makarov, and A.M. Stalevich, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 294, No. 6, 15-18 (2006). eid=2-s2.0-34250009041

  33. A.V. Demidov, A.G. Makarov, and A.M. Stalevich J. Appl. Mechan. and Techn. Phys., 48, No. 6, 897-904 (2007). 10.1007/s10808-007-0114-8

  34. A.M. Stalevich, A.G. Makarov, and E.D. Saidov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 270, No. 1, 16-22 (2003). eid=2-s2.0-2642532049

  35. A.G. Makarov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 266, No. 2, 13-17 (2002). eid=2-s2.0-0036931214

  36. A.M. Stalevich and A.G. Makarov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 267, No. 3, 10-13 (2002). eid=2-s2.0-0038128574

  37. A.M. Stalevich, A.G. Makarov, and E.D. Saidov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 268, No. 4-5, 15-18 (2002). eid=2-s2.0-0037742684

  38. A.M. Stalevich and A.G. Makarov, Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 255, No. 3, 8-12 (2000). eid=2-s2.0-0034436083

  39. A.G. Makarov, N.V. Pereborova, et al., Izv. Vuzov. Tekhnol. Tekst. Prom-sti [In Russian], 23, No. 1, 24-29 (2014).

  40. N.V. Pereborova, Fibre Chemistry, No. 52 (3), 168-172 (2020). https://doi.org/10.1007/s10692-020-10174-x

    Article  CAS  Google Scholar 

  41. N.V. Pereborova, A.G. Makarov, et al., Fibre Chemistry, No. 52 (3), 154-159 (2020). https://doi.org/10.1007/s10692-020-10171-0

    Article  CAS  Google Scholar 

  42. A.G. Makarov, N.V. Pereborova, et al., Fibre Chemistry, No. 52 (3), 135-140 (2020). https://doi.org/10.1007/s10692-020-10168-9

    Article  CAS  Google Scholar 

Download references

The study was financed within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation, Project No. FSEZ-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Makarov.

Additional information

Translated from Khimicheskie Volokna, No. 2, pp. 23-27, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimova, N.S., Pereborova, N.V. & Makarov, A.G. Activation Energy of Deformation Processes in Polymer Textile Materials. Fibre Chem 53, 76–81 (2021). https://doi.org/10.1007/s10692-021-10243-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10243-9

Navigation