Skip to main content
Log in

Predicting Functioning Processes of Uniaxially Oriented Polymeric Materials

  • INNOVATIVE DIRECTIONS OF POLYMER FIBER AND COMPOSITE MATERIALS SCIENCE DEVELOPMENT
  • Published:
Fibre Chemistry Aims and scope

Traditionally, prediction of functioning processes of uniaxially oriented polymeric materials faces objective difficulties due to inhomogeneity of the rheological structure of these materials. Wide use of uniaxially oriented polymeric materials in various branches of technology ranging from household polymers to facings of space rockets and deep-water equipment calls for development of modern high-accuracy methods of prediction of their functional properties, including various deformation-relaxation processes. Development of new methods of prediction of functional properties of polymeric materials is based on the need for designing innovative products from these materials which have the desired functionality and high competitiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. G. Makarov, G. Y. Slutsker, et al., Physics of the Solid State, 58, No. 4, 840-846 (2016). https://doi.org/10.1134/S1063783416040132

    Article  CAS  Google Scholar 

  2. A. G. Makarov, G. Y. Slutsker, and N. V. Drobotun, Technical Physics, 60, No. 2, 240-245 (2015). https://doi.org/10.1134/S1063784215020152

    Article  CAS  Google Scholar 

  3. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 4, 306-309 (2018), https://doi.org/10.1007/s10692-019-09981-8

    Article  CAS  Google Scholar 

  4. A. G. Makarov, N. V. Pereborova, et al., Fibre Chemistry, 50, No 4, 378-382 (2018). https://doi.org/10.1007/s10692-019-09993-4

    Article  CAS  Google Scholar 

  5. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 5, 468-472 (2019). https://doi.org/10.1007/s10692-019-10010-x

    Article  CAS  Google Scholar 

  6. P. P. Rymkevich, A. A. Romanova, et al., J. Macromol. Sci., Part B: Physics, 52, No. 12, 1829-1847 (2013), https://doi.org/10.1080/00222348.2013.808906

  7. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 6, 569-572 (2019). https://doi.org/10.1007/s10692-019-10030-7

    Article  CAS  Google Scholar 

  8. N. V. Pereborova, A. G. Makarov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 378, No. 6, 267-272 (2018). eid=2-s2.0-85072335464

  9. N. V. Pereborova, A. V. Demidov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 374, No. 2, 251-255 (2018). eid=2-s2.0-85056451197

  10. A. S. Gorshkov, A. G. Makarov, et al., Magazine Civil Eng., 44, No. 9, 76-83, 103-104 (2013). https://doi.org/10.5862/MCE.44.10

  11. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 368, No 2, 309-313 (2017). eid=2-s2.0-85035207042

  12. A. V. Demidov, A. G. Makarov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 367, No 1, 250-258 (2017). eid=2-s2.0-85033239149

  13. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 370, No 4, 287-292 (2017). eid=2-s2.0-85057142312

  14. A. G. Makarov, A. V. Demidov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 360, No. 6, 194-205 (2015). eid=2-s2.0-84976560627

  15. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 359, No. 5, 48-58 (2015). eid=2-s2.0-84971636036

  16. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Mechanics of Solids, 44, No. 1, 122-130 (2009). https://doi.org/10.3103/S0025654409010130

    Article  Google Scholar 

  17. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 351, No. 3, 110-115 (2014). eid=2-s2.0-84937410003

  18. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ. Tekhnol. Tekst. Prom., 297, No. 2, 14-17 (2007). eid=2-s2.0-38849203122

  19. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ. Tekhnol. Tekst. Prom., 298, No. 3, 11-14 (2007). eid=2-s2.0-34648822922

  20. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ. Tekhnol. Tekst. Prom., 292, No. 4, 9-13 (2006). eid=2-s2.0-33845499474

  21. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ. Tekhnol. Tekst. Prom., 291, No. 3, 13-17 (2006). eid=2-s2.0-37849188658

  22. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ. Tekhnol. Tekst. Prom., 294, No. 6, 15-18 (2006). eid=2-s2.0-34250009041

  23. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, J. Appl. Mechanics and Technical Phys., 48, No. 6, 897-904 (2007). https://doi.org/10.1007/s10808-007-0114-8

    Article  Google Scholar 

  24. A. M. Stalevich,, A. G. Makarov, and E. D. Saidov, Izv. VUZ. Tekhnol. Tekst. Prom., 270, No. 1, 16-22 (2003). eid=2-s2.0-2642532049

  25. A. G. Makarov, Izv. VUZ. Tekhnol. Tekst. Prom., 266, No. 2, 13-17 (2002). eid=2-s2.0-0036931214

  26. A. M. Stalevich and A. G. Makarov, Izv. VUZ. Tekhnol. Tekst. Prom., 267, No 3, 10-13 (2002). eid=2-s2.0-0038128574

  27. A. M. Stalevich and A. G. Makarov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 268, No. 4-5, 15-18 (2002). eid=2-s2.0-0037742684

  28. A. M. Stalevich and A. G. Makarov, Izv. VUZ. Tekhnol. Tekst. Prom., 255, No. 3, 8-12 (2000). eid=2-s2.0-0034436083

  29. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 5, 397-400 (2020). https://doi.org/10.1007/s10692-020-10119-4

    Article  CAS  Google Scholar 

  30. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 5, 401-403 (2020). https://doi.org/10.1007/s10692-020-10120-x

    Article  CAS  Google Scholar 

  31. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No 6, 467-470 (2020). https://doi.org/10.1007/s10692-020-10136-3

    Article  CAS  Google Scholar 

  32. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 6, 471-474 (2020). https://doi.org/10.1007/s10692-020-10137-2

    Article  CAS  Google Scholar 

  33. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 2, 104-107 (2018). https://doi.org/10.1007/s10692-018-9941-z

    Article  CAS  Google Scholar 

  34. A. G. Makarov, N. V. Pereborova, et al., Fibre Chemistry, 50, No. 3, 239-242 (2018). https://doi.org/10.1007/s10692-018-9968-1

    Article  CAS  Google Scholar 

  35. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 6, 487-490 (2019). https://doi.org/10.1007/s10692-019-10015-6

    Article  CAS  Google Scholar 

  36. N. V. Pereborova, A. G. Makarov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., No 3, 253-257 (2018). eid=2-s2.0-85059766891

  37. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Tekhnol. Tekst. Prom., No 6, 120-124 (2014). eid=2-s2.0-84937439497

  38. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ. Tekhnol. Tekst. Prom., 293, No. 5, 21-25 (2006). eid=2-s2.0-34247548784

Download references

This research was supported financially within the ambit of accomplishment of state assignment of the Ministry of Science and Higher Education of the Russian Federation, Project No. FSEZ-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Makarov.

Additional information

Translated from Khimicheskie Volokna, No. 2, pp. 3-7, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidov, A.V., Makarov, A.G., Pereborova, N.V. et al. Predicting Functioning Processes of Uniaxially Oriented Polymeric Materials. Fibre Chem 53, 55–60 (2021). https://doi.org/10.1007/s10692-021-10239-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10239-5

Navigation