Skip to main content
Log in

Structural Changes of Fibroin During Chemical Processing of Silk Wastes

  • Published:
Fibre Chemistry Aims and scope

Structural changes occurring in fibroin during chemical processing of silk manufacturing wastes were studied using viscometry, electrophoresis in polyacrylamide gel with sodium dodecyl sulfate, IR spectroscopy, dynamic light scattering, and x-ray diffraction. Hydrolytic destruction increased and the fibroin molecular mass decreased if the pH of degumming solutions, temperature, and degumming time were increased. The optimal conditions for degumming silk fibers that minimized destruction of the polypeptide chains were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Akram, Int. J. Mod. Trends Eng. Res., 2, No. 8, 223-236 (2015).

    Google Scholar 

  2. S. W. Ha, A. E. Tonelli, and S. M. Hudson, Biomacromolecules, No. 6, 1722-1731 (2005).

  3. J. Yan, G. Zhou, et al., Acta Biomater., No. 11, 1-5 (2010).

  4. Q. Lu, X. Hu, et al., Acta Biomater., 6, 1380-1387 (2010).

    CAS  PubMed  Google Scholar 

  5. L. Li, Y. Xiong, et al., J. Appl. Polym. Sci., 132, No. 47, 42822 (2015).

    Google Scholar 

  6. G. M. Nogueira, A. C. D. Rodas, et al., Bioresour. Technol., 101, No. 21, 8446-8451 (2010).

    CAS  PubMed  Google Scholar 

  7. E. S. Sashina, K. A. Kitchenko, and A. Yu. Golubikhin, Vestn. SPbGUPTD, Ser. 1: Estestv. Tekh. Nauki, No. 2, 74-77 (2016).

  8. C. Chen, C. Chuanbao, et al., Polymer, 47, 6322-6327 (2006).

    CAS  Google Scholar 

  9. D. N. Rockwood, R. C. Preda, et al., Nat. Protoc., 6, No. 10, 1612-1631 (2011).

    CAS  PubMed  Google Scholar 

  10. B. Kundu, R. Rajkhowa, et al., Adv. Drug Delivery Rev., 65, No. 4, 457-470 (2013).

    CAS  Google Scholar 

  11. I. I. Agapov, M. M. Mosenovich, et al., Dokl. Akad. Nauk, 433, No. 5, 1-4 (2010).

    Google Scholar 

  12. L. A. Safonova, M. M. Bobrova, et al., Vestn. Transplantologii Iskusstv. Organov, XVIII, No. 3, 74-84 (2016).

  13. L. D. Koh, J. Yeo, et al., Mater. Sci. Eng., C, 86, 151-172 (2018).

  14. D. L. Kaplan and C. Vepari, Prog. Polym. Sci., 32, 991-1007 (2007).

    PubMed  PubMed Central  Google Scholar 

  15. M. Lovett, G. Eng, et al., Organogenesis, 6, No. 4, 217-224 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. E. C. Filipe, M. Santos, et al., JACC Basic Transl. Sci., 3, No. 1, 38-53 (2017).

    Google Scholar 

  17. B. Zuo, L. Dai, and Z. Wu, J. Mater Sci., No. 41, 3357-3361 (2006).

  18. L. A. Safonova, M. M. Bobrova, et al., Sovrem. Tekhnol. Med., 7, No. 3, 6-13 (2015).

    Google Scholar 

  19. E. S. Sashina, A. M. Bochek, et al., Zh. Prikl. Khim., 79, No. 6, 881-888 (2006).

    Google Scholar 

  20. J. Yao, H. Masuda, et al., Macromolecules, 35, 6-9 (2002).

    CAS  Google Scholar 

  21. S. Ling, Z. Qin, et al., Nat. Commun., 8, No. 1387, 1-12 (2017).

    Google Scholar 

  22. E. S. Sashina, N. P. Novoselov, and K. Khaineman, Zh. Prikl. Khim., 76, No. 1, 133-137 (2003).

    Google Scholar 

  23. D. M. Phillips, L. F. Drummy, et al., J. Am. Chem. Soc., 126, 14350-14351 (2004).

    CAS  PubMed  Google Scholar 

  24. E. S. Sashina, A. Yu. Golubikhin, and A. I. Susanin, Khim. Volokna, No. 4, 34-39 (2015).

  25. Q. Wang, Y. Yang, et al., Biomacromolecules, 13, 1875-1881 (2012).

    CAS  PubMed  Google Scholar 

  26. A. I. Susanin, E. S. Sashina, et al., Zh. Prikl. Khim., 91, No. 4, 578-583 (2018).

    Google Scholar 

  27. X. Liu, C. Zhang, et al., Mater. Lett., 65, 2489-2491 (2011).

    CAS  Google Scholar 

  28. M. K. Gupta, S. K. Khokhar, et al., Langmuir, 23, 1315-1319 (2007).

    CAS  PubMed  Google Scholar 

  29. G. Freddi, R. Mossotti, et al., J. Biotechnol., 106, No. 1, 101-112 (2003).

    CAS  PubMed  Google Scholar 

  30. H. J. Kim, M. K. Kim, et al., Int. J. Biol. Macromol., 104, 294-302 (2017).

    CAS  PubMed  Google Scholar 

  31. C. S. Ki and Y. H. Park, Fibers Polym., 14, No. 9, 1460-1467 (2013).

    CAS  Google Scholar 

  32. R. Wang, Y. Zhu, et al., J. Cleaner Prod., 203, No. 1, 492-497 (2018).

    CAS  Google Scholar 

  33. X. Chen, D. P. Knight, et al., Polymer, 42, 9969-9974 (2001).

    CAS  Google Scholar 

  34. A. E. Thurber, F. G. Omenetto, and D. L. Kaplan, Biomaterials, 71, 145-157 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. P. Aramwit, S. Kanokpanont, et al., J. Biosci. Bioeng., 107, No. 5, 556-561 (2009).

    CAS  PubMed  Google Scholar 

  36. B. J. Allardyce, R. Rajkhova, et al., Text. Res. J., 86, No. 3, 275-287 (2015).

    Google Scholar 

  37. Q. Wang, Q. Chen, et al., Biomacromolecules, 14, 285-289 (2013).

    CAS  PubMed  Google Scholar 

  38. N. M. Mahmoodi, M. Arami, et al., J. Cleaner Prod., 18, 146-151 (2010).

    CAS  Google Scholar 

  39. H. J. Kim and I. C. Um, Korea-Australia Rheol. J., 26, No. 2, 119-125 (2014).

    Google Scholar 

  40. H. Dou and B. Zuo, J. Text. Inst., 106, No. 3, 311-319 (2015).

    CAS  Google Scholar 

  41. R. Rajkowa, L. Wang, et al., J. Appl. Polym. Sci., 119, 1339-1347 (2011).

    Google Scholar 

  42. B. P. Partlow, A. P. Tabatabai, et al., Macromol. Biosci., 16, No. 5, 666-675 (2016).

    CAS  PubMed  Google Scholar 

  43. K. Nultsch and O. Germershaus, Eur. J. Pharm. Sci., 106, No. 30, 254-261 (2017).

    CAS  PubMed  Google Scholar 

  44. Z. Wang, H. Yang, et al., J. Text. Inst., 110, No. 1, 134-140 (2018).

    Google Scholar 

  45. A. I. Susanin, E. S. Sashina, et al., Vestn. SPbGUPTD, No. 4, 50-55.

  46. M. L. Gulrajani and S. V. Gupta, Indian J. Fibre Text. Res., 21, 270-275 (1996).

    CAS  Google Scholar 

  47. M. Aarami, S. Rahimi, et al., J. Appl. Polym. Sci., 106, 267-275 (2007).

    Google Scholar 

  48. A. I. Susanin, E. S. Sashina, et al., Khim. Volokna, No. 2, 12-19 (2017).

  49. https://web.expasy.org/proparam/ Bioinformatics Resource Portal (accessed Apr. 25, 2018).

  50. S. Inoue, K. Tanaka, et al., J. Biol. Chem., 275, 40517-40528 (2000).

    CAS  PubMed  Google Scholar 

  51. Y. Takasu, H. Yamada, and K. Tsubouchi, Biosci., Biotechnol. Biochem., 66, No. 12, 2715-2718 (2002).

  52. X. Hu, D. Kaplan, and P. Cebe, Macromolecules, 39, 6161-6170 (2006).

    CAS  Google Scholar 

  53. T. Asakura, A. Kuzuhara, et al., Macromolecules, 18, No. 10, 1841-1845 (1985).

    CAS  Google Scholar 

  54. B. Zue, L. Liu, and Z. Wu, J. Appl. Polym. Sci., 106, 53-59 (2007).

    Google Scholar 

  55. H. Yoshimizu and T. Asakura, J. Appl. Polym. Sci., 40, 1745-1756 (1990).

    CAS  Google Scholar 

  56. M. Garcia-Fuentes, E. Giger, et al., Biomaterials, 29, 633-642 (2008).

    CAS  PubMed  Google Scholar 

  57. H. Y. Wang and Y. O. Zhang, Soft Matter, No. 9, 138-145 (2013).

Download references

We thank staff members of Lodz Technical University Dr. Waldemar Maniukiewicz to assistance with the x-ray structure analysis and Mr. Zbigniev Zientarski for supporting the experimental work. The studies were performed in the framework of a state task from the Ministry of Science and Higher Education of the Russian Federation No. 4.5718.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Susanin.

Additional information

Translated from Khimicheskie Volokna, No. 6, pp. 6-10, November—December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susanin, A.I., Sashina, E.S., Zakharov, V.V. et al. Structural Changes of Fibroin During Chemical Processing of Silk Wastes. Fibre Chem 51, 412–417 (2020). https://doi.org/10.1007/s10692-020-10123-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-020-10123-8

Navigation