Skip to main content
Log in

Electrical Resistance of Carbonized Polyvinyl Alcohol Fibers

  • Published:
Fibre Chemistry Aims and scope

A study was carried out on the effect of the carbonization temperature of dehydrated polyvinyl alcohol fibers on their electrical resistance at room temperature. A relationship was found between the electrical resistance and an increase in the carbonization temperature. A sharp drop in the specific volume electrical resistance of elementary carbon fibers to ultra low values not exceeding 0.193·10-3 mΩ·cm is found upon reaching a critical carbonization temperature. Minimum electrical resistance is found for the temperature range 743-775°C. A model is proposed for the physicochemical processes in the fiber system leading to the behavior discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Great Soviet Encyclopedia [Electronic resource] [in Russian]: https://slovar.cc/enc/bse/2030843.html (access date October 11, 2019).

  2. S. N. Ushakov, Polyvinyl Alcohol and Its Derivatives [in Russian], vol. 2, Akademiya Nauk SSSR, Moscow-Leningrad (1960).

    Google Scholar 

  3. V. S. Smirnov, K. E. Perepelkin, and L. I. Fridman, New Industrial Chemical Fibers [in Russian], Leningrad Branch, All-Union Paper and Pulp Industry Research Institute (with associated pilot plant) (1973).

  4. D. V. Petkieva, E. K. Golubev, et al., Doklady Chemistry, 477, No. 2, 274-277 (2017).

    Article  CAS  Google Scholar 

  5. S. I. Senkevich, T. V. Druzhinina, et al., Khimiya Tv. Topliva, No. 1, 51-58 (2007).

  6. J. A. Fernandez, T. Morishita, et al., J. Power Sources, 175, 675-679 (2008).

    Article  CAS  Google Scholar 

  7. V. A. Lysenko, Scientific Basis for the Creation of Electrically-Conducting Porous Composites. Theory and Practice [in Russian], Palmarium Academic Publishers (2015): ISBN 978-3-659-60150-7.

  8. V. A. Lysenko, Systematic Design of Carbon Composite Materials [in Russian], Palmarium Academic Publishers (2018), ISBN 978-620-2-38124-6.

  9. V. A. Lysenko, M. V. Kriskovets, and S. V. Burinskii, Reports to the Sixteenth St. Petersburg International Conference on Regional Information Technology (RI-2018) [in Russia], St. Petersburg Society of Computer Science, Information Technology and Telecommunication Networks, St. Petersburg (2018), pp. 343-345.

  10. V. A. Lysenko and M. V. Kriskovets, Reports to the Fifth International Scientific Conference on Prospects in the Development of Russian Information Technology [in Russian], Sevastopol State University, Sevastopol (2019), pp. 396-397.

  11. A. A. Konkin, Carbon and Other Flame-Resistant Fibers [in Russian], Khimiya, Moscow (1974).

    Google Scholar 

  12. V. Ya. Varshavskii, Carbon Fibers [in Russian], Varshavskii, Moscow (2007).

    Google Scholar 

  13. R. M. Levit, Electrically-Conducting Chemical Fibers [in Russian], Khimiya, Moscow (1986).

    Google Scholar 

  14. U. K. Fatema, U. J. Uddin, et al., Text. Res. J., 81, No. 7, 659-672 (2010).

    Article  Google Scholar 

  15. M. Yazdanpanah, R. Mehdinavaz, et al., The Eighth International Chemical Engineering Congress & Exhibition (IChEC), Kish, Iran (2014), pp. 1-4.

    Google Scholar 

  16. I. Yu. Prosanov, Fizika Tverd. Tela, 53, No. 4, 824-827 (2011).

    Google Scholar 

  17. V. A. Lysenko, M. V. Kriskovets, et al., Dizain, Materialy, Tekhnologiya, No. 5(40), 56-59 (2015).

  18. V. A. Lysenko, M. V. Kriskovets, and P. Yu. Sal’nikova, Khim. Volokna, No. 5, 9-15 (2015).\

  19. GWINSTEK [Electronic Resource] [in Russian], https://gwinstek.com/cn-GB/products/detail/GOM-802 (access date October 11, 2019).

  20. A. A. Konkin, Heat-Stable, Flame-Resistant and Noncombustible Fibers [in Russian], Khimiya, Moscow (1978).

    Google Scholar 

  21. V. A. Lysenko and M. V. Kriskovets, Khim. Volokna, No. 4, 28-35 (2018).

  22. M. V. Kriskovets, V. A. Lysenko, and T. D. Andreichikova, Khim. Volokna, No. 4, 23-27 (2017).

  23. V. K. Zaporozhets, S. I. Kurbatova, and N. L. Manuilova, Handbook for Engineers, Technicians and Students [in Russian], ONTI NKTP, Moscow-Leningrad (1936),

    Google Scholar 

  24. ISOKhIM. OAO Svetlogorsk Khimvolokno [Electronic Resource] [in Russian]: http://www.sohim.by/rus/production/carbon/taw/ (access date October 3, 2019).

  25. Torayca [Electronic Resource] [in Russian], http://www.torayca.com (access date October 11, 2019).

  26. M. V. Kriskovets, V. A. Lysenko, et al., Zh. Prikl. Khim., 91, No. 1, 28-35 (2018).

    Google Scholar 

  27. V. A. Lysenko and M. V. Kriskovets, Khim. Volokna, No. 2, 40-53 (2019).

  28. M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York (1975).

    Google Scholar 

  29. V. V. Shmidt, Introduction to the Physics of Superconductors [in Russian], Moscow Center for Continuing Mathematical Education MTsNMO, Moscow (2000).

    Google Scholar 

  30. L. N. Cooper, Physical Review, 104, No. 4, 1189-1190 (1956).

    Article  CAS  Google Scholar 

  31. V. A. Kabanov, Encyclopedia of Polymers [in Russian], vol. 2, Sovetskaya Éntsiklopediya, Moscow (1974).

    Google Scholar 

  32. S. S. Shatalin, Aspects of the Thermolysis of Polyvinyl Alcohol in Fire-Resistant Composites, Technological Sciences Candidate’s Dissertation [in Russian], St. Petersburg State Institute of Cinema and Television SPbGIKiT, St. Petersburg (2015).

  33. P. S. Sotnikov, G. I. Distler, et al., Reports to the Conference on Problems of the Physicochemical Mechanics of Fibrillar and Porous Dispersed Structures and Materials [in Russian], Zinatne, Riga (1967), pp. 119-124.

    Google Scholar 

  34. I. Yu. Prosanov and N. F. Uvarov, Fizika Tverd. Tela, 4, No. 2, 393-396 (2012).

    Google Scholar 

  35. M. É. Rozenberg, Vinyl Acetate Polymers [in Russian], Khimiya, Leningrad (1983).

    Google Scholar 

  36. R. R. Heimann, S. E. Evsyukov, and I. Karvan, Carbyne and Carbynoid Structures, Springer (1999).

  37. J. A. Januszewski and R. R. Tykwinski, Chem. Soc. Rev., No. 9, 3184-3203 (2014).

    Article  CAS  Google Scholar 

  38. M. M. Yildizhan, D. Fazzi, et al., J. Chem. Phys., 134, No. 12, 124512 (2011).

    Article  Google Scholar 

  39. A. Milani, A. Lucotti, et al., J. Phys. Chem. C, 115, No. 26, 12836-12843 (2011).

    Article  CAS  Google Scholar 

  40. I. V. Shakhova and E. A. Belenkov, Vestnik Chelyabinsk. Gos. Univ., No. 12, 33-40 (2010).

    Google Scholar 

  41. M. Weimer, W. E. Hieringer, et al., Chem. Phys., 309, No. 1, 77-87 (2005).

    Article  CAS  Google Scholar 

  42. A. Milani, M. Tommasimi, et al., Beilstein J. Nanotechnology, No. 6, 480-491 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lysenko.

Additional information

Translated from Khimicheskie Volokna, Vol. 51, No. 5, pp. 26-31, September-October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, V.A., Kriskovets, M.V. & Burinskii, S.V. Electrical Resistance of Carbonized Polyvinyl Alcohol Fibers. Fibre Chem 51, 350–356 (2020). https://doi.org/10.1007/s10692-020-10110-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-020-10110-z

Navigation