Skip to main content

Features of the Structural Organization and Sorption Properties of Cellulose

An improved model of the layered structure of cellulose microfibrils is proposed, taking into account the presence of slit-like pores between its structural elements. The scheme of the formation of donoracceptor intramolecular, intermolecular and interlayer hydrogen bonds of one glucopyranose unit in the cellulose crystallite is presented. The mechanism of specific adsorption interactions of water molecules in a monolayer with active centers located on the hydrophilic surfaces of elementary fibrils is described. The energy of dipole-dipole interactions was calculated depending on the distance between the active center and the adsorbate water molecule. The thermodynamic parameters characterizing the state of the adsorbate in the adsorption layers are determined by the proton magnetic relaxation method and sorption measurements. The possibility of determining the net heat of adsorption in a bilayer taking into account the Arrhenius nature of the correlation times of the thermal molecular motions of the adsorbate was established. An increase in the entropy of adsorbed water during the adsorption process was revealed. It was found that during adsorption, a part of the inner regions of crystallites transitions to their surface with the participation of cellulose hydroxyl groups, and during desorption, the reverse process is observed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. A. D. French, Cellulose, 24, No. 11, 4605-4609 (2017).

    CAS  Article  Google Scholar 

  2. W. G. Glasser, et al., Cellulose, 19, No. 3, 589-598 (2012).

    CAS  Article  Google Scholar 

  3. Yu. B. Grunin, et al., Polymer Sci. Ser. A, 54, No. 3, 201-208 (2012).

    CAS  Article  Google Scholar 

  4. L. Yu. Grunin, et al., Polymer Sci. Ser. A, 57, No. 1, 43-51 (2015).

    CAS  Article  Google Scholar 

  5. Yu. B. Grunin, et al., Russ. J. Phys.Chem. A, 87, No. 1, 100-103 (2013).

    CAS  Article  Google Scholar 

  6. A. D. French, et al., Cellulose, 21, No. 2, 1051-1063 (2014).

    CAS  Article  Google Scholar 

  7. V. P. Nikolaev, A. A. Ageev, and Yu. G. Frolov, Trudy MKhTI im. D. I. Mendeleeva (Proceedings of the D. Mendeleev University of Chemical Technology of Russia), No. 101, 84-101 (1978).

  8. NMR analyzer “Spin Track”. URL: http://www.nmr-design.com.

  9. V. I. Chizhik, Nuclear Magnetic Relaxation [in Russian], St. Petersburg State University, St. Petersburg (2004) 385 p.

    Google Scholar 

  10. R. M. Brown, J. Polymer Sci. Part A: Polymer Chem., 42, No. 3, 487-495 (2004).

    CAS  Article  Google Scholar 

  11. Z. A. Rogovin, Chemistry of Cellulose [in Russian], Khimiya, Moscow (1972) 519 p.

    Google Scholar 

  12. Yu. B. Grunin, et al., Khim. Volokna, 5, 31-36 (2017).

    Google Scholar 

  13. Y. Nishiyama, J. Wood Sci., 55, No. 4, 241-249 (2009).

    CAS  Article  Google Scholar 

  14. L. Qingqing and S. Renneckar, Biomacromolecules, 12, No. 3, 650-659 (2011).

    Article  Google Scholar 

  15. M. Kimura, et al., Cellulose, 21, No. 5, 3193-3201 (2014).

    CAS  Article  Google Scholar 

  16. S.-Y. Ding, S. Zhao, and Y. Zeng, Cellulose, 21, No. 2, 863-871 (2014).

    CAS  Article  Google Scholar 

  17. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond [Russian translation by M. O. Bulanin, G. S. Denisov, and D. N. Schepkin], ed. V. M. Chulanovskiy, Mir, Moscow (1964) 446 p.

  18. N. M. Bikales and L. Segal, Cellulose and Cellulose Derivatives [Russian translation], in 2 volumes, vol. 1, ed. Z. A. Rogovin, Mir, Moscow (1974) 500 p.

  19. P. Chen, et al., Cellulose, 25, No. 8, 4345-4355 (2018).

    CAS  Article  Google Scholar 

  20. Y. Habibi, L. A. Lucia, and O. J. Rojas, Chem. Rev., 110, No. 6, 3479-3500 (2010).

    CAS  Article  Google Scholar 

  21. C. Verlhac, J. Dedier, and H. Chanzy, J. Polymer Sci. Part A: Polymer Chem., 28, No. 5, 1171-1177 (1990).

    CAS  Article  Google Scholar 

  22. P. Langan, et al., Cellulose, 12, No. 6, 551-562 (2005).

    CAS  Article  Google Scholar 

  23. Chemistry Handbook [in Russian], Vol. 1, 2nd ed., ed. B. P. Nikolskiy, Khimiya, Moscow (1966) 1072 p.

  24. I. V. Saveliev, Physics Course. Vol. 2. Electricity. Oscillations and Waves. Wave Optics [in Russian], textbook in 3 volumes, Publishing House “Lan’,” St. Petersburg (2007) 467 p.

  25. Yu. B. Grunin, L. Yu. Grunin, and E. A. Nikol’skaya, Russ. J. Phys. Chem. A, 81, No. 7, 1165-1169 (2007).

    CAS  Article  Google Scholar 

  26. A. Abraham, Nuclear Magnetism [transl. from English], ed. G. V. Skrotskiy, Izdatinlit, Moscow (1963) 551 p.

  27. Yu. B. Grunin, et al., Russ. J. Phys. Chem. A, 90, No. 11, 2249-2253 (2016).

    CAS  Article  Google Scholar 

  28. S. Greg and K. Sing, Adsorption, Specific Surface Area, Porosity [Russian translation], 2nd ed., Mir, Moscow (1984) 306 p.

  29. Y. I. Gerasimov, Physical Chemistry Course [in Russian], in 2 volumes, vol. 1, Khimiya, Moscow (1964) 624 p.

    Google Scholar 

  30. L. Y. Grunin, et al., Biophysics, 62, No. 2, 198-206 (2017).

    CAS  Article  Google Scholar 

  31. M. M. Dubinin, Zh. Fiz. Khim., No. 5, 1301-1305 (1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Grunin.

Additional information

Translated from Khimicheskie Volokna, No. 5, pp. 3 – 9, September – October, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grunin, Y.B., Grunin, L.Y., Ivanova, M.S. et al. Features of the Structural Organization and Sorption Properties of Cellulose. Fibre Chem 51, 325–332 (2020). https://doi.org/10.1007/s10692-020-10106-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-020-10106-9