Skip to main content

Advertisement

Log in

Structural Transformations in Composite Nanofiltration Films Caused by the Action of Excess Pressure

  • Published:
Fibre Chemistry Aims and scope

Samples of original and working porous composite nanofiltration membranes were investigated by xray scattering, thermal analysis, and study of the specific flow rate and retention coefficient. It was established that mechanical loading due to excess pressure of 1.5 MPa in the OFAM-K membranes leads to conformational changes in the phenylone C-4 macromolecules in the crystalline and amorphous intercrystalline phases, where the calculated degree of crystallinity decreases from 49 to 36%. Investigations by differential-scanning calorimetry indicate homogeneous crystallites with a thermal effect of 7.87 kJ/kg are formed in the working sample of the membrane. The working sample of OPMNP membrane undergoes polymorphous rearrangement of the crystalline phase with a change in the dimensions of the crystalline cell in the direction of the crystal axis (c) and with increase of crystallinity from 44 to 55%, while the amorphous phase becomes looser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. S. I. Lazarev, Yu. M. Golovin, et al., Membrany i Membrannye Tekhnologii, 6, No. 2, 161-165 (2016).

    Google Scholar 

  2. S. K. Gupta, P. Singh, R. Kumar, Radiation Effects and Defects In Solids, 169. No. 8, 679-685 (2014).

    Article  CAS  Google Scholar 

  3. K. Wang, A. A. Abdalla, et al., Desalination, 401, 190-205 (2017).

    Article  CAS  Google Scholar 

  4. P. S. Singh, P. Ray, et al., J. Membrane Sci., 421-422, 51-59 (2012).

    Article  CAS  Google Scholar 

  5. D. Mileva, R. Androsch, et al., Polymer, 53, No. 18, 3994-4001 (2012).

    Article  CAS  Google Scholar 

  6. T. M. Murphy, D. S. Langhe, et al., Polymer, 53, 18, 4002-4009 (2012).

    Article  CAS  Google Scholar 

  7. D. L. Shaffer, M. E. Tousley, M. Elimelech, J. Membrane Sci., 249-256 (2017).

  8. H. F. Ridgway, G. Orbell, S. Gray, J. Membrane Sci., 524, .436-448 (2017).

  9. E. Drazevic, E. Kosutic, V. Freger, Water Research, 49, 444-452 (2014).

  10. O. S. Brovko, I. A. Palamarchuk, et al., Khim. Volokna, No. 4, 45-52 (2015).

  11. V. V. Murycheva, N, N, Yasinskaya, Khim. Volokna, No. 4, 42-45 (2014).

  12. A. E. Zavadskii, S. Yu. Vavilova, N. P. Prokorova, Khim. Volokna, No. 3, 22-26 (2013).

  13. A. E. Zavadskii, Khim. Volokna, No. 3, 66-68 (2011).

  14. J. Luo, X. Hang, et al., J. Membrane Sci., 509, 105-115 (2016).

    Article  CAS  Google Scholar 

  15. V. Hakimzadeh, S. M. A. Razavi, et al., Desalination, 200, No. 1-3, 520-522 (2006).

    Article  CAS  Google Scholar 

  16. S. Gul, M. Harasek, Appl. Thermal Eng., 43, 128-133 (2012).

    Article  Google Scholar 

  17. M. Loginov, K. Loginova, et al., J. Membrane Sci., 377, No. 1-2, 273-283 (2011).

    Article  CAS  Google Scholar 

  18. N. K. Saha, M. Balakrishnan, M. Ulbricht, Desalination, 249, No. 3, 1124-1131 (2009).

    Article  CAS  Google Scholar 

  19. N. M. Shahidi, S. M. A. Razavi, et al., 11th International Congress on Engineering and Food (ICEF11). Procedia Food Science (2011). Vol. 1. pp. 160-164.

  20. Vladipor: Site ZAO NTTs [Electronic resource]. Revision date: 25.03.2016. URL: http://www.vladipor.ru/ (Access date: 25.12.2017).

  21. A. I. Bonn, V. G. Dzyubenko, I. I. Shishova, Vysokomol. Soed. Ser. B, 35, No. 7, 922-932 (1993).

    Google Scholar 

  22. A. V. Kovalev, Membrany i Membrannye Tekhnologii, No. 3, 191-198 (2013).

  23. V. I. Azarov, A. V. Burov, A. V. Obolenskaya, Chemistry of Wood and Synthetic Polymers. University Textbook [inRussian], SPbLTA, St. Petersburg (1999), 628 pp.

  24. Yu. A. Fedotov, N. N. Smirnova, Plast. Massy, No. 14, 18-21 (2008).

  25. V. N. Arisova, Structure and Properties of “KM”. Textbook [in Russian], VolgGTU, Volgograd (2008), 94 pp.

  26. J. Radulovice, Sci. Techn. Rev., 55. No. 3-4, 21-28 (2005).

  27. Sh.Tuigiev, B. M. Ginzburg, et al., Dokl. Akad. Nauk Respubl. Tadzhikistan. Fiz. Khim., 51, No. 3, 208-211 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lazarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Golovin, Y.M., Polikarpov, V.M. et al. Structural Transformations in Composite Nanofiltration Films Caused by the Action of Excess Pressure. Fibre Chem 50, 547–555 (2019). https://doi.org/10.1007/s10692-019-10027-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-019-10027-2

Navigation