Fibre Chemistry

, Volume 50, Issue 6, pp 533–537 | Cite as

Composite Phosphorus-Containing Cellulose and Carbon Fiber Materials with Antimicrobial Activity

  • M. Yu. SmirnovaEmail author
  • V. I. Dubkova
  • M. V. Solovskii
  • O. I. Maevskaya
  • N. A. Belyasova
  • E. F. Panarin

A method is proposed for imparting antimicrobial activity to phosphorus-containing cellulose and carbon materials entailing the adsorption of antibiotic aminoglycosides such as kanamycin, gentamycin, and amikacin on fibrous cellulose and carbon ion exchangers in acid and salt forms. The interaction of the polymer complexes with the base material was confirmed by IR spectral and differential thermal analysis data. The polymeric composite fiber materials were shown to be nontoxic and have prolonged strong antibiotic activity.


This work was carried out in the framework of a state assignment (Contract No. AAAA1-11160771450049-0).


  1. 1.
    L. P. Perepelkin, Khim. Volokna, No. 6, 3-13 (2000).Google Scholar
  2. 2.
    N. A. Gushchin, G. U. Ostrovidova, and E. A. Sosnov, Zh. Prikl. Khim., 81, No. 1, 132-135 (2008).Google Scholar
  3. 3.
    N. E. Kotel’nikova, S. A. Mikhailova, and E. N. Vlasova, Zh. Prikl. Khim., 80, 323-330 (2007).Google Scholar
  4. 4.
    I. N. Ermolenko, E. D. Buglov, et al., New Fibrous Medical Adsorbents [in Russian], Nauka i Tekhnika, Minsk (1978).Google Scholar
  5. 5.
    I. N. Ermolenko, I. P. Lyubliner, and N. V. Gul’ko, Organoelement Carbon Fiber Materials [in Russian], Nauka i Tekhnika, Minsk (1982).Google Scholar
  6. 6.
    L. M. Bondarenko, V. I. Dubkova, et al., Effect of Anthropogenic Factors on the Structural Transformations of Human and Animal Organs, Tissues, Cells, Materials of the Second All-Russian Scientific and Technological Conference [in Russian], Saratov (1993), part 3, p. 127.Google Scholar
  7. 7.
    V. I. Dubkova, O. I. Mayevskaya, et al., Materials of the Third Sympozjum Inzynieria Ortopedyczna I Protetyczna, IOP, June 25-27, 2001, Bialystok (2001), pp. 29-35.Google Scholar
  8. 8.
    V. I. Dubkova, O. I. Maevskaya, et al., Vesti Natsional’noi Akad. Nauki Belarusi, Ser. Med. Nauk, No. 1, 68-77 (2010).Google Scholar
  9. 9.
    L. A. Vol’f, L. V. Emets, et al., Fibers with Special Properties [in Russian], Khimiya, Moscow (1980).Google Scholar
  10. 10.
    M. V. Solovskii, E. B. Tarabukina, et al., Russ. J. Phys. Chem. A, 88, No. 3, 428-432 (2014).CrossRefGoogle Scholar
  11. 11.
    E. B. Tarabukina, M. V. Solovskij, et al, J. Bioact. Compat. Polym., 30, 571-583 (2015).CrossRefGoogle Scholar
  12. 12.
    V. I. Dubkova, M. V. Solovskii, et al., RU, BY Patent No. 2482883, Byul. Izobr., No. 15 (2013).Google Scholar
  13. 13.
    M. V. Solovskii, V. I. Dubkova, et al., Appl. Biochem. & Microbiol., 45, No. 2, 226-228 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Yu. Smirnova
    • 1
    • 2
    Email author
  • V. I. Dubkova
    • 3
  • M. V. Solovskii
    • 1
  • O. I. Maevskaya
    • 3
  • N. A. Belyasova
    • 4
  • E. F. Panarin
    • 1
    • 2
  1. 1.Institute of High-Molecular-Weight Compounds, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.MedbiotechMinskBelarus
  4. 4.Belarus State Technological UniversityMinskBelarus

Personalised recommendations