Skip to main content
Log in

Structure of Polyacrylonitrile Fibers Produced from N-Methylmorpholine-N-Oxide Solutions

  • CHEMISTRY AND TECHNOLOGY OF CHEMICAL FIBERS
  • Published:
Fibre Chemistry Aims and scope

Structural and morphological evolution of polyacrylonitrile (PAN) samples from starting powder of a ternary copolymer to fibers produced from concentrated solutions of PAN in N-methylmorpholine-N-oxide (NMMO) was studied using x-ray diffraction for the first time. X-ray exposures in transmission and reflection geometries allowed the structures of outer and inner parts of the PAN fibers to be differentiated. It was shown that a shell—core structure formed in the precipitation bath during fiber spinning. A comparison of x-ray diffraction patterns of fibers spun using the NMMO process and industrial samples spun from DMSO and aqueous sodium thiocyanate solutions did not reveal fundamental structural differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. X. Zhang, Fundamentals of Fiber Science, DEStech Publications, Lancaster, 2014, p. 426.

    Google Scholar 

  2. S. P. Papkov, Physicochemical Bases of Synthetic Fiber Production [in Russian], Khimiya, Moscow, 1972, p. 312.

    Google Scholar 

  3. S. K. Atureliya and Z. Bashir, Polymer, 34, No. 24, 5116-5122 (1993); DOI: https://doi.org/10.1016/0032-3861(93)90256-A.

    Article  CAS  Google Scholar 

  4. H. S. Kim and H. H. Cho, J. Korean Fiber Soc., 29, No. 2, 101-106 (1992); DOI: https://doi.org/10.1002/app.1993.070470218.

    Article  CAS  Google Scholar 

  5. M. Sokol, J. Grobelny, and E. Turska, Polymer, 28, No. 5, 843-846 (1987); DOI: https://doi.org/10.1016/0032-3861(87)90238-2.

    Article  CAS  Google Scholar 

  6. E. Fitzer and W. Frohs, Khim. Volokna, No. 2, 14-17 (1992).

  7. A. Gupta and R. Singhal, J. Polym. Sci., Polym. Phys., 21, No. 11, 2243-2262 (1983); DOI: https://doi.org/10.1002/pol.1983.180211103.

    Article  CAS  Google Scholar 

  8. H. Jiang, D. Pan, and M. Zhou, Global J. Eng. Sci. Res. Manage., 2, No. 8, 9-15 (2015).

    Google Scholar 

  9. V. G. Kulichikhin, I. Yu. Skvortsov, et al., Adv. Polym. Technol., (2016); DOI: https://doi.org/10.1002/adv.21761.

  10. S. M. Pawde and K. Deshmukh, J. Appl. Polym. Sci., 110, No. 5, 2569-2578 (2008); DOI: https://doi.org/10.1002/app.28761.

    Article  CAS  Google Scholar 

  11. X. D. Liu and W. Ruland, Macromolecules, 26, No. 12, 3030-3036 (1993); DOI: https://doi.org/10.1021/ma00064a006.

    Article  CAS  Google Scholar 

  12. X. Zeng, J. Chen, et al., J. Appl. Polym. Sci., 114, 3621–3625 (2009); DOI: https://doi.org/10.1002/app.31020.

    Article  CAS  Google Scholar 

  13. A. T. Serkov, Viscose Fibers [in Russian], Khimiya, Moscow, 1980, p. 296.

    Google Scholar 

  14. L. A. Zlatoustova, “Production of polyacrylonitrile cords for carbon fibers,” Candidate Dissertation in Chemical Sciences, Moscow, 2006.

  15. Y. X. Wang, C. G. Wang, et al., J. Appl. Polym. Sci., 104, 1026-1037 (2007); DOI: https://doi.org/10.1002/app.24793.

    Article  CAS  Google Scholar 

  16. Q. Ouyang, Y. S. Chen, et al., J. Macromol. Sci., Part B: Phys., 50, 2417-2427 (2011); DOI: https://doi.org/10.1080/00222348.2011.564104.

    Article  CAS  Google Scholar 

  17. H. Ge, H. Liu, et al., J. Appl. Polym. Sci., 108, 947-952 (2008); DOI: https://doi.org/10.1002/app.27286.

    Article  CAS  Google Scholar 

  18. Yu. P. Semenov, V. P. Kostromin, et al., Fibre Chem., 3, No. 4, 365-368 (1972); DOI:https://doi.org/10.1007/BF00543567.

    Article  Google Scholar 

  19. M. M. Iovleva, S. I. Banduryan, et al., Fibre Chem., 31, No. 2, 140-142 (1999); DOI:https://doi.org/10.1007/BF02358643.

    Article  CAS  Google Scholar 

  20. V. G. Kulichikhin, L. K. Golova, et al., Polym. Sci., Ser. C, 58, No. 1, 74-84 (2016); DOI: https://doi.org/10.1134/S1811238216010069.

    Article  CAS  Google Scholar 

  21. V. Kulichikhin, L. Golova, et al., Eur. Polym. J., 92, 326-337 (2017); DOI: https://doi.org/10.1016/j.eurpolymj.2017.05.021.

    Article  CAS  Google Scholar 

  22. L. Golova, I. Makarov, et al., “Structure – Properties Interrelationships in Multicomponent Solutions Based on Cellulose and Fibers Spun Therefrom,” in: Cellulose, InTech Publishing, New York, 2013, p. 377; DOI: 10.5772/51688.

  23. L. Boguslavsky and S. Margel, Glass Phys Chem., 31, No. 1, 102-114 (2005); DOI: https://doi.org/10.1007/s10720-005-0030-z.

    Article  CAS  Google Scholar 

Download references

We thank L. K. Kuznetsova and V. G. Kulichikhin. The work was performed in the framework of a State Task for the IPS, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Makarov.

Additional information

Translated from Khimicheskie Volokna, No. 6, pp. 33-37, November—December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, I.S., Golova, L.K., Vinogradov, M.I. et al. Structure of Polyacrylonitrile Fibers Produced from N-Methylmorpholine-N-Oxide Solutions. Fibre Chem 50, 508–513 (2019). https://doi.org/10.1007/s10692-019-10020-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-019-10020-9

Navigation