Skip to main content
Log in

X-ray Diffraction Study of Cellulose Powders and Their Hydrogels. Computer modeling of the Atomic Structure

  • Published:
Fibre Chemistry Aims and scope

Cellulose powders from flax fiber and deciduous wood and hydrogels regenerated from DMA/LiCl solutions of them were studied using x-ray diffraction. Structural characteristics were calculated. Three-dimensional models of atomic positions in the short-range order of amorphous hydrogels were constructed. It was found that flax cellulose was characterized by a higher degree of crystallinity and larger transverse cross section and monofilament length than deciduous cellulose. Super-swelled and lyophilized hydrogels from the cellulose solutions gave diffuse diffraction patterns characteristic of amorphous materials. The calculated coordination-sphere radii for lyophilized hydrogels corresponded to analogous data for cellulose II. Differences in the coordination numbers were due to structural differences in the short-range order. The distribution of atoms in the short-range ordered region was modeled using molecular dynamics and corresponded to a disordered cellulose II cluster with dimensions along the crystallographic axes of 2a, 2b, and 5c (15, 16, and 52 Å). A cluster consisted of 16 cellulose chains ~52 Å in length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. M. Wada, Y. Nishiyama, et al., Adv. X-ray Anal., 51, 138-144 (2008).

    CAS  Google Scholar 

  2. J. Obradovic, H. Wondraczek, et al., Cellulose, 21, No. 6, 4029 (2014).

    Article  Google Scholar 

  3. B. J. C. Duchemin, R. H. Newman, and V. P. Steiger, Cellulose, 14, 311-320 (2007).

    Article  CAS  Google Scholar 

  4. N. E. Kotelnikova, Yu. V. Bikhovtsova, et al., Cellul. Chem. Technol., 48, 643-651 (2014).

    CAS  Google Scholar 

  5. N. Kotelnikova, A. Mikhailidi, et al., Cellul. Chem. Technol., 50, No. 5-6, 545-555 (2016).

    CAS  Google Scholar 

  6. W. Ruland, Acta Crystallogr., 14, 1180-1185 (1961).

    Article  CAS  Google Scholar 

  7. A. Thygesen, J. Oddershede, et al., Cellulose, 12, 563-576 (2005).

    Article  CAS  Google Scholar 

  8. X. Ju, M. Bowden, et al., Carbohydr. Polym., 123, 476-481 (2015).

    Article  CAS  Google Scholar 

  9. P. Ahvenainen, I. Kontro, and K. Svedstrom, Cellulose, 23, 1073-1086 (2016).

    Article  CAS  Google Scholar 

  10. N. Terinte, R. Ibbett, and K. C. Schuster, Lenzinger Ber., 89, 118-131 (2011).

    CAS  Google Scholar 

  11. M. F. Torlopov, V. I. Mikhaylov, et al., Cellulose, 25, 1031-1046 (2018).

    Article  CAS  Google Scholar 

  12. N. V. Melekh, “X-ray Structural Studies of Celluloses and Lignins of Various Origins,” Candidate Dissertation, PetrGU, Petrozavodsk, 2008, 166 pp.

  13. B. E. Warren, X-ray Diffraction, Addison-Wesley Publ. Co., Reading, Mass., 1969, 381 pp.

  14. B. E. Warren, Kristallografiya, 16, No. 7, 1264-1270 (1971).

    CAS  Google Scholar 

  15. R. L. Mozzi and B. E. Warren, J. Appl. Crystallogr., 2, No. 1, 164-170 (1969).

    Article  CAS  Google Scholar 

  16. R. L. Mozzi and B. E. Warren, J. Appl. Crystallogr., 3, No. 2, 251-358 (1970).

    Article  CAS  Google Scholar 

  17. N. V. Melekh, Natural and Technical Cellulose. Structure Analysis [in Russian], Izd. LAP, Moscow, 2013, 104 pp.

    Google Scholar 

  18. C. Yamane, T. Aoyagi, et al., Polym. J., 38, No. 8, 819-826 (2006).

    Article  CAS  Google Scholar 

  19. A. I. Prusskii and L. A. Aleshina, Vysokomol. Soedin., Ser. A, 57, No. 3, 268-281 (2016).

    Google Scholar 

  20. P. Langan, Y. Nishiyama, and H. Chanzy, Biomacromolecules, 2, 410-416 (2001).

    Article  CAS  Google Scholar 

  21. G. I. Kobzev, Application of Non-empirical and Semi-empirical Methods in Quantum-Chemical Calculations: Student Aide [in Russian], Gos. Orenburgskii Univ., Orenburg, 2004, 150 pp.

    Google Scholar 

  22. C. Stan Tsai, An Introduction to Computational Biochemistry, Wiley-Liss, New York, 2002, 368 pp.

    Book  Google Scholar 

  23. M. E. Solov’ev and M. M. Solov’mev, Computational Chemistry [in Russian], SOLON-Press, Moscow, 2005, 536 pp.

    Google Scholar 

  24. C. A. Stortz, G. P. Johnson, et al., Carbohydr. Res., 344, 2217 (2009).

    Article  CAS  Google Scholar 

  25. A. G. Gerbst, A. A. Grachev, et al., Bioorg. Khim., 33, No. 1, 28 (2007).

    Google Scholar 

  26. Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc., 124, 9074-9082 (2002).

    Article  CAS  Google Scholar 

  27. L. H. Thomas, V. T. Forsyth, et al., Plant Physiol., 161, 465-476 (2013).

    Article  CAS  Google Scholar 

  28. R. A. Festucci-Buselli, W. C. Otoni, and C. P. Joshi, Braz. J. Plant Physiol., 19, No. 1, 1-13 (2007).

    Article  CAS  Google Scholar 

  29. A. A. Baker, W. Helbert, et al., Biophys. J., 79, 1139-1145 (2000).

    Article  CAS  Google Scholar 

  30. N. V. Melekh and L. A. Aleshina, Estestv. Tekh. Nauki, No. 3, 37-43 (2011).

  31. L. A. Aleshina and I. V. Lyukhanova, Uch. Zap. Petrozavodsk. Gos. Univ., Ser. Estestv. Tekh. Nauki, No. 6 (111), 55-60 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mikhailidi.

Additional information

Translated from Khimicheskie Volokna, No. 3, pp. 28-36, May—June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshina, L.A., Prusskii, A.I., Mikhailidi, A.M. et al. X-ray Diffraction Study of Cellulose Powders and Their Hydrogels. Computer modeling of the Atomic Structure. Fibre Chem 50, 166–175 (2018). https://doi.org/10.1007/s10692-018-9954-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-018-9954-7

Keywords

Navigation