Fibre Chemistry

, Volume 49, Issue 5, pp 302–307 | Cite as

Systemic Transformations During Heating and Carbonization of Polyoxadiazole Fibers

  • V. A. Lysenko
  • M. V. Kriskovets
  • P. Yu. Sal’nikova
Article
  • 3 Downloads

The effect of thermal degradation, including at low temperatures (50-350°C), of poly-p-phenylene-1,3,4-oxadiazole fibers on their electrical conductivity during carbonization (900°C) was studied. The electrical conductivity of carbonized fibers showed several local extrema depending on the thermal-degradation regime that were due to features of transforming the structure and phase states of the polymer fiber system into the electrically conducting states of the carbon fiber system. It was found that the carbon fibers had semiconductor properties that depended on the direction of oriented drawing and the thermal-degradation regimes of the starting polymer fibers.

References

  1. 1.
    K. E. Perepelkin, R. A. Makarova, et al., Khim. Volokna, No. 5, 8-14 (2008).Google Scholar
  2. 2.
    Svetlogorsk Manufacturing Combine Khimvolokno; http://www.sohim.by (accessed Mar. 20, 2017).
  3. 3.
    V. A. Timofeev, A. P. Krasnov, et al., Khim. Volokna, No. 3, 50-53 (2005).Google Scholar
  4. 4.
    D. Gomes and S. P. Nunes, J. Membr. Sci., 321, 114-122 (2008).CrossRefGoogle Scholar
  5. 5.
    D. Gomes, J. Roeder, et. al., J. Power Sources, 175, 49-59 (2008).CrossRefGoogle Scholar
  6. 6.
    H. Maab and S. P. Nunes, J. Membr. Sci., 445, 127-134 (2013).CrossRefGoogle Scholar
  7. 7.
    E. Abouzari-Lotf, A. Shockravi, et. al., RSC Adv., 4, 17993-18002 (2014).Google Scholar
  8. 8.
    Z. Yuan, X. Li, et. al., J. Membr. Sci., 488, 194-202 (2015).Google Scholar
  9. 9.
    P. Mormile, L. Petti, et. al., Mater. Chem. Phys., 77, 945-951 (2002).Google Scholar
  10. 10.
    N. C. Yang, Y.-H. Park, and D. H. Suh, J. Polym. Sci., Part A: Polym. Chem., 41, 674-683 (2003).Google Scholar
  11. 11.
    E. Hamciuc, M. Bruma, et. al., Polymer, 42, 1809-1815 (2001).Google Scholar
  12. 12.
    B. Schulz, M. Bruma, and L. Brehmer, Adv. Mater., 9, 601-613 (1997).CrossRefGoogle Scholar
  13. 13.
    I. P. Dobrovol’skaya, Z. Yu. Chereiskii, and I. M. Stark, Vysokomol. Soedin., Ser. A, 23, No. 6, 1261-1265 (1981).Google Scholar
  14. 14.
    V. V. Korshak, Thermally Stable Polymers [in Russian], Nauka, Moscow, 1969, 423 pp.Google Scholar
  15. 15.
    A. A. Lysenko, “Resource conservation principles for activated carbon-fiber production technologies, their properties and use,” Doctoral Dissertation, SPGUTD, St. Petersburg, 2007, 310 pp.Google Scholar
  16. 16.
    M. Shioya, K. Shinotani, and A. Takaku, J. Mater. Sci., 34, 6015-6025 (1999).CrossRefGoogle Scholar
  17. 17.
    I. P. Dobrovol’skaya, “Pyrolysis of oriented polymers. Structure and properties of carbon fibers,” Doctoral Dissertation, NII Khim. Volokon Kompoz. Mater., St. Petersburg, 2006, 306 pp.Google Scholar
  18. 18.
    V. A. Lysenko, Scientific Principles for Creating Electrically Conducting Porous Composites. Theory and Practice, Palmarium Academic Publishing, 2015, 368 pp.; ISBN 978-3-659-60150-7.Google Scholar
  19. 19.
    M. Murakami, EP 0,339,691; IPC C04B35/524, D01F9/24; Appl. May 28, 1986; Publ. Nov. 2, 1989; “Process for producing graphite films.”Google Scholar
  20. 20.
    M. Murakami and S. Yoshimura, Synth. Met., 18, 509-514 (1987).CrossRefGoogle Scholar
  21. 21.
    V A. Lysenko and M. V Kriskovets, “Preparation and characterization of carbon fibers based on polyoxadiazole,” in: Proceedings of the VIIth International Conference “Promising Polymer Composites. Alternative Technologies. Reprocessing. Use. Ecology (Composite-2016)” [in Russian], ETI (branch) SGTU, Engel2s, 2016, pp. 331-333.Google Scholar
  22. 22.
    V. A. Kargin and G. L. Slonimskii, Short Sketches in Polymer Physical Chemistry [in Russian], Khimiya, Moscow, 1967, 232 pp.Google Scholar
  23. 23.
    A. A. Konkin, Thermo- and Heat-stable and Non-flammable Fibers [in Russian], Khimiya, Moscow, 1978, 424 pp.Google Scholar
  24. 24.
    V. Ya. Varshavskii, Carbon Fibers [in Russian], Varshavskii, Moscow, 2007, 500 pp.Google Scholar
  25. 25.
    A. A. Konkin, Carbon and Other Heat-stable Fibrous Materials [in Russian], Khimiya, Moscow, 1974, 376 pp.Google Scholar
  26. 26.
    I. N. Ermolenko, I. P. Lyubliner, and N. V. Gul’ko, Element-containing Carbon Fibrous Materials [in Russian], Nauka i Tekhnika, Minsk, 1982, 321 pp.Google Scholar
  27. 27.
    S. Madorsky et al., Thermal Decomposition of Organic Polymers [in Russian], Mir, Moscow, 1967, 328 pp.Google Scholar
  28. 28.
    R. M. Aseeva, Structural Chemistry of Carbon and Coals [in Russian], Nauka, Moscow, 1969, 245 pp.Google Scholar
  29. 29.
    V. Ya. Varshavskii, Khim. Volokna, No. 3, 9-15 (1994).Google Scholar
  30. 30.
    V. A. Lysenko and M. V. Kriskovets, “Information modeling for predicting and studying the properties of polyoxadiazole and polyacrylonitrile fibers,” in: Proceedings of the XVth St. Petersburg International Conference “Regional Informatics (RI-2016)” [in Russian], St. Petersburg, 2016, pp. 43-44.Google Scholar
  31. 31.
    G. Hinrichsen, J. Appl. Polym. Sci., 17, 3305-3321 (1973).CrossRefGoogle Scholar
  32. 32.
    V. N. Tsvetkov, Vysokomol. Soedin., Ser. A, 19, No. 10, 2171 (1977).Google Scholar
  33. 33.
    K. E. Perepelkin, O. B. Malan’ ina, et al., Khim. Volokna, No. 5, 45-48 (2004).Google Scholar
  34. 34.
    S. P. Papkov and A. T. Kalashnik, Vysokomol. Soedin., 26, No. 11, 2243-2253 (1984).Google Scholar
  35. 35.
    Yu. N. Sazanov, I. P. Dobrovol’skaya, et al., Zh. Prikl. Khim., 88, No. 8, 117-123 (2015).Google Scholar
  36. 36.
    O. I. Romanko, Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. Estestv. Nauki, No. 3, 120-128 (2015).Google Scholar
  37. 37.
    I. A. Piskunova, “Development of processes for producing carbon fibrous materials using pyrolytic additives,” Candidate Dissertation, SPGUTD, St. Petersburg, 2003, 155 pp.Google Scholar
  38. 38.
    A. V. Volokhina, I. F. Khudoshev, et al., Khim. Volokna, No. 5, 14-17 (1975).Google Scholar
  39. 39.
    Arselon Thermally Stable Materials; http://xn—80aajzhcnfck0a.xn—plai/PublicDocuments/1003521.pdf. (accessed Mar. 19, 2017).Google Scholar
  40. 40.
    N. M. Emanuel’ and A. L. Buchachenko, Chemical Physics of the Molecular Destruction and Stabilization of Polymers [in Russian], Nauka, Moscow, 1988, 368 pp.Google Scholar
  41. 41.
    E. T. Denisov, Oxidation and Destruction of Carbon-chain Polymers [in Russian], Khimiya, Leningrad, 1990, 288 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. A. Lysenko
    • 1
  • M. V. Kriskovets
    • 1
  • P. Yu. Sal’nikova
    • 2
  1. 1.St. Petersburg State University of Industrial Technologies and DesignSt. PetersburgRussia
  2. 2.Ultrapolimery Ltd.St. PetersburgRussia

Personalised recommendations