Advertisement

Fibre Chemistry

, Volume 49, Issue 3, pp 205–216 | Cite as

Nonwoven Materials Produced by Electrospinning for Modern Medical Technologies (Review)

  • K. I. Lukanina
  • T. E. Grigor’ev
  • T. Kh. Tenchurin
  • A. D. Shepelev
  • S. N. Chvalun
Article

The results from the use of nonwoven materials produced by electrospinning in modern medical technologies are presented. The applications of such materials range from filtration mediums in medical establishments to direct medical articles. Examples of novel dressings are presented. Considerable attention is paid to the use of nonwoven materials in the form of flat multilayered and tubular matrixes in such vigorously developing regions of science as regenerative medicine.

References

  1. 1.
    I. V. Petryanov et al., Lepestok (Light Respirators) [in Russian], Nauka, Moscow (1984), 216 pp.Google Scholar
  2. 2.
    Y/N Filatov, Electrospinning Fibrous Materials (ESV Process) [in Russian], GNTs NIF-KhI im. L. Ya. Karpova, Moscow (1997), 297 pp.Google Scholar
  3. 3.
    A. V. Tovmash et al., Third Petryanov Readings. Trudy [in Russian], RITs MGIU, Moscow (2007), pp. 39-40.Google Scholar
  4. 4.
    I. V. Danilycheva et al., Third Petryanov Readings. Trudy [in Russian], RITs MGIU, Moscow (2001) pp. 302.Google Scholar
  5. 5.
    Yu. A. Poroshena et al., Terapevticheskii Arkhiv, 58. No. 4, 49-52 (1986)Google Scholar
  6. 6.
    K. I. Lukanina, A. D. Shepelev, Sixth Petryanov Readings. Collection of Theses [Russian translation], MGIY, Moscow (2007), pp. 57-59.Google Scholar
  7. 7.
    TU 9393-003-45117892-05.Google Scholar
  8. 8.
  9. 9.
    V. P. Tumanov, F. German, Procedural Handbook on Treatment of Wounds [in Russian], 1st Edition, Paul Hartmann (2000), 123 pp.Google Scholar
  10. 10.
    A. M. Svetukhin, Yu. A. Amiraslanov, Contaminated Surgery: Modern State of the Problem [in Russian] (Ed. V. S. Savel’ev), Media Medika, Moscow (2003) pp. 335-344.Google Scholar
  11. 11.
    K. I. Lukanina, Development of scientific and technological principles of creation of spinning media from biodegradable and biocompatible fibrous materials based on polylactide [in Russian], Candidate’s Thesis, VNIIIMT, Roszdravnadzora, Moscow (2011).Google Scholar
  12. 12.
    V. D. Fedorov (Ed.), Biologically active spinning media in complex treatment of purulent necrotic wounds [in Russian], MÉ RF, (2000), 156 pp.Google Scholar
  13. 13.
    GOST 8981-78. Ethyl and normal butyl esters of acetic acid technical. Added data 1980-01-01. Resolution adopted 23.05.91. No. 730.Google Scholar
  14. 14.
    K. I. Lukanina et al., Fibre Chemistry, 41, No. 5, 302-306 (2009).CrossRefGoogle Scholar
  15. 15.
    A.K. Budyka et al., Fibre Chemistry, 43, No. 5, 332-338 (2012).CrossRefGoogle Scholar
  16. 16.
    K. I. Lukanina, A. D. Shepelev, F. E. Shin, II International Conference on Physiology and Medicine. Coll. Theses [in Russian], MGIU, Moscow, p. 48.Google Scholar
  17. 17.
    E.A. Gubareva et al., Biomaterials, 77, 320-335 (2016).CrossRefGoogle Scholar
  18. 18.
    E.A. Gubareva et al., Geny i Kletki, 9, No. 4, 1-6 (2014).Google Scholar
  19. 19.
    O. A. Romanova et al., Bull. Exper. Biol. a. Medicine, 159, No. 4, 557-566 (2015).CrossRefGoogle Scholar
  20. 20.
    E. V. Sytina et al., Molekulyarnaya Meditsina, No. 6, 38-47 (2014).Google Scholar
  21. 21.
    A. V. Rodina et al., Bull. Exper. Biol. a. Medicine, 162, No. 1, 120-126 (2016).CrossRefGoogle Scholar
  22. 22.
    T. Kh. Tenchurin, V. G. Mamagulashvili, A. D. Shelepev, Tenth Petryanov and First Fuksov Readings [in Russian], Coll. Theses, NIFKhI, Moscow (2015), pp. 99-100.Google Scholar
  23. 23.
    A. Yu. Khomenko et al., Ros. Nanotekhnologii, 8, No. 9, 41-45 (2013).Google Scholar
  24. 24.
    A. S. Sotnichenko et al., 8, No. 3, 86-94 (2013).Google Scholar
  25. 25.
    E.V. Kuevda et al., Dokl. Biochem. a. Biophys., 470, No. 1, 375-378 (2016).CrossRefGoogle Scholar
  26. 26.
    E. A. Gubareva et al., Chapters in: Stem Cells and Regenerative Medicine [in Russian] Ed. V. A. Tkachuk), MGU, Moscow (2014), pp. 58-72.Google Scholar
  27. 27.
    A. N. Kopylov et al., Ros. Bioterapevtich. Zhurn., 3, No. 2, 67-71 (2014).Google Scholar
  28. 28.
    M. V. Kiselevskiy et al., Intern. J. Pharmaceut. Res. a. All. Sci., Vol. 5. No. 3, 91-96 (2016).Google Scholar
  29. 29.
    T. G. Dyuzheva et al., 11, No. 1, 43-47 (2016).Google Scholar
  30. 30.
    A. V. Lyundup et al., 11. No. 3, 103-107 (2016).Google Scholar
  31. 31.
    N. Lal, S. Mehra, V. Lal, J. Clin. Diagnostic Res., 8, No. 12, AC01-AC04 (2014).Google Scholar
  32. 32.
    A. V. Rodina et al., Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, 152-160 2016.Google Scholar
  33. 33.
    A. Yu. Gorodkov, D. A. Nilolaev, Byull. NTsSSKh im. A. N. Bakuleva RAMN, No. 9, 67-69 (2003).Google Scholar
  34. 34.
    U. Duch, Helle Andersen, Hans Gregersen, BioMedical Engineering OnLine, BioMed Birgitte Central Ltd., London (2004), pp. 3-23.Google Scholar
  35. 35.
    M. V. Kiselevskii, Vestnik Permsk. Un-ta., No. 3, 11-18 (2015).Google Scholar
  36. 36.
    N. Yu. Anisimova et al., Patent Appl. No. 2015152518 of 08.12.15.Google Scholar
  37. 37.
    N. Yu. Anisimova et al., Patent Appl. No. 2015155960 of 25.12.15.Google Scholar
  38. 38.
    M. V. Kiselevskii et al., Sovremennye Tekhnologii v Meditsine, 8, 6-13 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • K. I. Lukanina
    • 1
  • T. E. Grigor’ev
    • 1
  • T. Kh. Tenchurin
    • 1
  • A. D. Shepelev
    • 1
  • S. N. Chvalun
    • 1
  1. 1.National Research Institute “Kurchatov Institute,”MoscowRussia

Personalised recommendations