Skip to main content

Advertisement

Log in

Structure-Formation Features in Ultrathin Fibers of Poly(3-Hydroxybutyrate) Modified with Nanoparticles

  • CHEMISTRY AND TECHNOLOGY OF CHEMICAL FIBRES
  • Published:
Fibre Chemistry Aims and scope

Supramolecular structure formation of poly(3-hydroxybutyrate) ultrathin fibers prepared by electrospinning and the influence of low concentrations of silicon and TiO2 nanoparticles on the structure, physicomechanical and sorption properties, and resistance to thermal destruction and thermoand photo-oxidative destruction of non-woven fibrous material based on these fibers were studied. It was found that nanoparticles promoted the formation of thinner fibers with enhanced physicomechanical parameters and a structure that was more resistant to thermal and thermo- and photo-oxidative destruction and had a positive effect on the growth dynamics of mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Greiner and J. H. Wendorff, Adv. Polym. Sci., No. 219, 107-171 (2008).

  2. Y. Filatov, A. Budyka, and V. Kirichenko, Electrospinning of Micro- and Nanofibers: Fundamentals in Separation and Filtration Processes, Begell House Inc., New York, 2007, 404 pp.

    Google Scholar 

  3. A. Kulkarni, V. A. Bambole, and P. A. Mahanwar, Polym. Plast. Technol. Eng., 49, No. 5, 427-441 (2010).

    Article  CAS  Google Scholar 

  4. Yu. N. Filatov, Electrospinning of Fibrous Materials (ES-Process) [in Russian], Neft′ i Gaz, Moscow, 1997, 298 pp.

    Google Scholar 

  5. A. P. Bonartsev, S. G. Yakovlev, et al., Biochem. (Mosc.) Suppl. Ser. B: Biomed. Chem., 6, No. 1, 42-47 (2012).

    Article  Google Scholar 

  6. A. P. Bonartsev, A. L. Iordanskii, et al., J. Balk. Tribol. Assoc., 14, No. 3, 359-395 (2008).

    CAS  Google Scholar 

  7. I. I. Zharkova, A. P. Bonartsev, et al., Biomed. Khim., 58, No. 5, 579-591 (2012).

    Article  CAS  Google Scholar 

  8. Yu. N. Pankova, A. N. Shchegolikhin, et al., J. Mol. Liq., 156, No. 1, 65-69 (2010).

    Article  CAS  Google Scholar 

  9. A. A. Ol′khov, A. L. Iordanskii, et al., Entsikl. Inzh.-Khim., No. 7, 17-21 (2012).

  10. A. P. Boskhomdzhiev, A. P. Bonartsev, et al., Biochem. (Mosc.) Suppl. Ser. B: Biomed. Chem., 4, No. 2, 177-183 (2010).

    Article  Google Scholar 

  11. A. P. Bonartsev, A. P. Boskhomodgiev, et al., Mol. Cryst. Liq. Cryst., 556, No. 1, 288-300 (2012).

    Article  CAS  Google Scholar 

  12. A. P. Bonartsev, A. P. Boskhomodgiev, et al., Chem. Chem. Technol., 6, No. 4, 385-392 (2012).

    CAS  Google Scholar 

  13. A. P. Bonartsev, A. L. Iordanskii, et al., J. Balk. Tribol. Assoc., 14, No. 3, 359-395 (2008).

    CAS  Google Scholar 

  14. O. V. Staroverova, A. M. Shushkevich, et al., Tekhnol. Zhivykh Sist., 10, No. 8, 74-79 (2013).

    CAS  Google Scholar 

  15. O. V. Staroverova, A. A. Ol′khov, et al., Vestn. MITKhT, VI, No. 6, 120-127 (2011).

    Google Scholar 

  16. A. A. Olkhov, O. V. Staroverova, et al., in: Nanostructured Polymers and Nanochemistry: Research Progress, A. K. Haghi, S. Kubica, and G. E. Zaikov (eds.), Inst. for Eng. of Polymer Mater. and Dyes, IMPIB, Torun, Poland, 2012, pp. 25-36.

  17. A. A. Ishchenko, S. G. Dorofeev, et al., RU Pat. 2,411,613 C1, Feb. 10, 2011, “Method of producing nanocrystalline silicon having stable, bright photoluminescence”; Byull. No. 4.

  18. A. A. Ishchenko, V. N. Bagratashvili, et al., RU Pat. 2,419,227 C1, Aug. 27, 2013, “Method of production of fluorescent labels based on biodegradable nanoparticles of silicon for use in vivo”; Byull., No. 24.

  19. S. G. Dorofeev, A. O. Rybaltovskii, et al., Ross. Nanotekhnol., 7, No. 7-8, 96-101 (2012).

    Google Scholar 

  20. G. P. Luchinskii, Chemistry of Titanium [in Russian], Khimiya, Moscow, 1971, 472 pp.

    Google Scholar 

  21. G. M. Kuz′micheva, E. V. Savinkina, et al., Kristallografiya, 55, No. 5, 913-917 (2010).

    Google Scholar 

  22. S. V. Vlasov and A. A. Ol′khov, Methods for Estimating the Degree of Orientation and Anisotropy of Polymers [in Russian], MITKhT, Moscow, 29 pp.

  23. S. V. Vlasov, A. A. Ol′khov, et al., Vysokomol. Soedin., 42, No. 4, 676-682 (2000).

    Google Scholar 

  24. V. M. Vinogradov and G. S. Golovkin (eds.), Practicum in Plastics Processing Technology [in Russian], Khimiya, Moscow, 1980, 240 pp.

    Google Scholar 

  25. A. A. Ol′khov, V. B. Ivanov, et al., Plast. Massy, No. 6, 19 (1998).

  26. S. G. Karpova, A. L. Iordanskii, et al., Dokl. Akad. Nauk, 446, No. 5, 1-4 (2012).

    Google Scholar 

  27. A. A. Ol′khov, O. V. Staroverova, et al., Vestn. Kazan. Tekhnol. Univ., 16, No. 8, 157-161 (2013).

    Google Scholar 

  28. G. C. Rutledge and S. V. Fridrikh, Adv. Drug Delivery Rev., 59, No. 14, 1384-1391 (2007).

    Article  CAS  Google Scholar 

  29. V. A. Kozlov, “Technology development for electrospinning of non-woven materials based on mixtures of fluoropolymers” [in Russian], Author’s Abstract of a Candidate Dissertation, MITKhT, Moscow, 2011.

  30. A. V. Markov and S. V. Vlasov, Orientation Effects in the Production of Polymeric Items [in Russian], MITKhT, Moscow, 87 pp.

  31. A. V. Markov, “Technology of oriented multicomponent polymer films” [in Russian], Author’s Abstract of a Doctoral Dissertation, MITKhT, Moscow, 2006.

  32. M. L. Di Lorenzo, M. Gazzano, and M. C. Righetti, Macromolecules, 45, No. 14, 5684-5691 (2012).

    Article  Google Scholar 

  33. S. P. Papkov, Physicochemical Principles of Polymer Solution Processing [in Russian], Khimiya, Moscow, 1971, 372 pp.

    Google Scholar 

  34. A. V. Petrov, “Electrospinning of nanofibers and fibrous materials from solutions of polymer homologs of poly(N-vinylpyrrolidone) and oligomer—polymer mixtures” [in Russian], Author’s Abstract of a Candidate Dissertation, MITKhT, Moscow, 2013.

  35. M. Shen (ed.), Viscoelastic Relaxation in Polymers, Interscience Publ., A Division of John Wiley and Sons Inc., New York, 1971.

    Google Scholar 

  36. Yu. K. Godovskii, Thermophysical Methods for Studying Polymers [in Russian], Khimiya, Moscow, 1976, 216 pp.

    Google Scholar 

  37. A. A. Ol′khov, Yu. V. Tertyshnaya, and L. S. Shibryaeva, Vysokomol. Soedin., Ser. B, 44, No. 11, 2043-2047 (2002).

    Google Scholar 

  38. L. S. Shibryaeva, A. A. Ol′khov, and Yu. V. Tertyshnaya, Plast. Massy, No. 9, 49-57 (2010).

  39. L. M. W. K. Gunaratne and R. A. Shanks, J. Therm. Anal. Calorim., 83, No. 2, 313-319 (2006).

    Article  CAS  Google Scholar 

  40. A. Ya. Malkin and S. P. Papkov (eds.), Orientation Effects in Polymer Solutions and Melts [in Russian], Khimiya, Moscow, 1980, 280 pp.

    Google Scholar 

  41. A. I. McHugh and C. Silevi, Polym. Eng. Sci., 16, 158 (1976).

    Article  CAS  Google Scholar 

  42. R. D. Ulrich and F. P. Price, J. Appl. Polym. Sci., 20, 1095 (1976).

    Article  CAS  Google Scholar 

  43. A. A. Ishchenko, G. V. Fetisov, and L. A. Aslanov, Nanosilicon: Properties, Preparation, Use, Study Methods, and Control [in Russian], Fizmatlit, Moscow, 2011, 648 pp.

    Google Scholar 

  44. A. A. Ishchenko, A. A. Ol′khov, and M. A. Gol′dshtrakh, RU Pat. 2,429,189 C1, “Polymeric nanocomposition for protection from UV radiation”; Sept. 20, 2011; Byull., No. 26.

  45. A. A. Ol′khov, D. J. L′yao, et al., Plast. Massy, No. 9, 40-46 (2010).

  46. A. O. Rybaltovskii, V. N. Bagratashvili, et al., Ross. Nanotekhnol., 7, 76-81 (2012).

    Article  Google Scholar 

  47. V. P. Solomko, Filled Crystallizing Polymers [in Russian], Naukova Dumka, Kiev, 1980, 264 pp.

    Google Scholar 

  48. A. V. Lobanov, N. B. Sul′timova, et al., A. A. Berlin and S. D. Varfolomeev (eds.), Kniga po Trebovaniyu, Moscow, 2012, 486 pp.

  49. A. L. Iordanskii, A. A. Olkhov, et al., Desalination, 126, 139-145 (1999).

    Article  CAS  Google Scholar 

  50. V. P. Gordienko and V. G. Sal′nikov, Plast. Massy, No. 5-6, 9-13 (2014).

  51. A. L. Iordanskii, A. A. Ol′khov, et al., in: Macromolecular Symposia. Special Issue: Fillers, Filled Polymers and Polymer Blends, 233, No. 1, 108-116 (2006).

  52. M. V. Tsebrenko, Ultrathin Synthetic Fibers [in Russian], Khimiya, Moscow, 1991, 214 pp.

    Google Scholar 

  53. B. Brule and J.-J. Flat, in: Macromolecular Symposia. Special Issue: Fillers, Filled Polymers and Polymer Blends, 233, No. 1, 210-216 (2006).

  54. A. A. Popov, N. Ya. Rapoport, and G. E. Zaikov, Oxidation of Oriented and Directed Polymers [in Russian], Khimiya, Moscow, 1987, 232 pp.

    Google Scholar 

  55. A. A. Ol′khov, V. B. Ivanov, et al., Plast. Massy, No. 1, 31-33 (2008).

  56. V. B. Ivanov, S. I. Voinov, et al., Vestn. MITKhT, 5, No. 3, 92-96 (2010).

    Google Scholar 

  57. A. A. Ol′ khov, A. L. Iordanskii, et al., RU Pat. 2,444,544 C2, Mar. 10, 2012, “Polyolefin-based self-decomposing polymer composition.”

  58. A. P. Boskhomdzhiev, A. P. Bonartsev, et al., Int. Polym. Sci. Technol., 37, No. 11, 25-30 (2010).

    Google Scholar 

  59. A. P. Boskhomdzhiev, “Biodestruction and Biocompatibility of Polymer Systems Based on Polyoxyalkanoates” [in Russian], Author’s Abstract of a Candidate Dissertation, A. N. Bakh Inst. Biochem., RAS, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ol′khov.

Additional information

Translated from Khimicheskie Volokna, No. 5, pp. 8-24, September—October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ol′khov, A.A., Iordanskii, A.L., Staroverova, O.V. et al. Structure-Formation Features in Ultrathin Fibers of Poly(3-Hydroxybutyrate) Modified with Nanoparticles. Fibre Chem 47, 348–361 (2016). https://doi.org/10.1007/s10692-016-9692-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-016-9692-7

Keywords

Navigation