Skip to main content

Supramolecular Structure of Chitosan Acid-Hydrolysis Products

The supramolecular structure of chitosan acid-hydrolysis products was studied using NMR spectroscopy. Their principal characteristics (specific surface area, average crystallite size, and degree of crystallinity) were determined using data calculated from the free-induction decay signal followed by Fourier transformation for samples prepared by homogeneous acid hydrolysis and heterogeneous acid ethanolysis of chitosan. It was shown that nanocrystalline chitosan was produced under the given conditions upon precipitation of the products from homogeneous acid-catalyzed destruction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. F. J. Pavinatto, L. Caseli, and O. N. Oliveira, Jr., Biomacromolecules, 11, 1897-1908 (2010).

    CAS  Article  Google Scholar 

  2. M. Rinaudo, Prog. Polym. Sci., 31, 603-632 (2006).

    CAS  Article  Google Scholar 

  3. S. V. Madihally and H. W. T. Matthew, Biomaterials, 20, 1133-1142 (1999).

    CAS  Article  Google Scholar 

  4. T. Takahashi, K. Takayama, et al., Int. J. Pharm., 61, 35-41 (1990).

    CAS  Article  Google Scholar 

  5. T.-H. Kim, H.-L. Jiang, et al., Prog. Polym. Sci., 32, 726-753 (2007).

    CAS  Article  Google Scholar 

  6. N. R. Sudarshan, D. G. Hoover, and D. Knorr, Food Biotechnol., 6, 257-272 (1992).

    CAS  Article  Google Scholar 

  7. S.-Y. Ong and J. Wu, Biomaterials, 29, 4323-4332 (2008).

    CAS  Article  Google Scholar 

  8. I. Aranaz, M. Mengibar, et al., Curr. Chem. Biol., 3, 203-230 (2009).

    CAS  Google Scholar 

  9. J. Yang, F. Tian, et al., J. Biomed. Mater. Res. Part B, 84, 131-137 (2007).

    Google Scholar 

  10. S. Bagheri-Khoulenjani, S. M. Taghizadeh, and H. Mirzadeh, Carbohydr. Polym., 78, 773-778 (2009).

    CAS  Article  Google Scholar 

  11. K. M. Vaarum, M. M. Myhr, et al., Carbohydr. Res., 299, 99-101 (1997).

    CAS  Article  Google Scholar 

  12. P. J. Vande Vord, H. W. T. Matthew, et al., J. Biomed. Mater. Res., 59, 585-590 (2002).

    CAS  Article  Google Scholar 

  13. H. Sashiwa and S. Aiba, Prog. Polym. Sci., 29, 887-908 (2004).

    CAS  Article  Google Scholar 

  14. O. Kozo, Y. Toshifumi, and O. Kenji, Int. J. Biol. Macromol., 34, 1-8 (2004).

    Article  Google Scholar 

  15. L. Amornrat, Y. Shingo, et al., Carbohydr. Res., 339, 825-833 (2004).

    Article  Google Scholar 

  16. L. Amornrat, N. Keiichi, et al., Carbohydr. Res., 339, 835-843 (2004).

    Article  Google Scholar 

  17. S. V. Levitin, L. S. Gal2braikh, and A. A. Chupina, Khim. Volokna, No. 6, 22-26 (2013).

  18. J. Li, J. Cai, and L. Fan, J. Appl. Polym. Sci., 109, 2417-2425 (2008).

    CAS  Google Scholar 

  19. T. T. Ching, H. C. Chih, et al., Carbohydr. Res., 346, 94-102 (2011).

    Article  Google Scholar 

  20. Yu. B. Grunin, Doctoral Dissertation, Riga (1989), “Analysis of the cellulose—water system using modified PMR methods.”

  21. Yu. B. Grunin, L. Yu. Grunin, et al., Vysokomol. Soedin., Ser. A, 54, No. 3, 397-405 (2012).

  22. Y. Nishiyama, G. B. Johnson, and A. D. French, Biomacromolecules, 9, No. 11, 3133-3140 (2008).

    CAS  Article  Google Scholar 

  23. Q. Li and S. Reneckar, Biomacromolecules, 12, No. 12, 650-659 (2011).

    CAS  Article  Google Scholar 

  24. Yu. B. Grunin, T. V. Smotrina, et al., Butlerovskie Soobshcheniya, No. 4, 35-39 (2001).

  25. P. P. Shorygin, Cellulose Chemistry [in Russian], Goskhimizdat, Moscow (1939), 440 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Translated from Khimicheskie Volokna, No. 3, pp. 8-11, May—June, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levitin, S.V., Gal’braikh, L.S., Grunin, Y.B. et al. Supramolecular Structure of Chitosan Acid-Hydrolysis Products. Fibre Chem 46, 147–150 (2014).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Chitosan
  • Supramolecular Structure
  • Polyacrylic Acid
  • Spin Relaxation Time
  • Sodium Tripolyphosphate