Skip to main content
Log in

Main Constitutive Equation of the Viscoelastic Behavior of Unixially Co-Oriented Polymers

  • MATERIALS SCIENCE
  • Published:
Fibre Chemistry Aims and scope

The kinetic-equations method is used to obtain a constitutive equation of viscoelasticity based on representations of the existence of different conformational states of the macromolecules of oriented polymers. The equation makes it possible to describe and predict the stress-strain state of synthetic fibers and other polymeric materials under non-destructive loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yu. N. Rabotnov, Elements of Hereditary Solid Mechanics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  2. J. Ferry, Viscoelastic Properties of Polymers [Russian translation], Nauka, Moscow (1970).

    Google Scholar 

  3. T. Alfrey, Mechanical Properties of High Polymers [Russian translation], Izdatinlit, Moscow (1952).

    Google Scholar 

  4. A. M. Stalevich, Deformation of Oriented Polymers [in Russian], Izd. SPbGUTD, St. Petersburg (2002).

    Google Scholar 

  5. A. G. Makarov and A. V. Demidov, Method for Mathematical Modeling of the Mechanical Properties of Polymers [in Russian], Izd. SPbGUTD, St. Petersburg (2009).

    Google Scholar 

  6. I. I. Bugakov, Creep of Polymeric Materials [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  7. V. S. Ekel’chik and V. M. Ryabov, Mekhanika Kompoz. Materialov, No. 3, 393-404 (1981).

    Google Scholar 

  8. A. G. Makarov and A. V. Demidov, Optimization of Methods for the Spectral Modeling of Polymer Deformation Processes [in Russian], Izd. SPbGUTD, St. Petersburg (2008).

    Google Scholar 

  9. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Mechanics of Solids, No. 44 (1), 122-130 (2009).

    Article  Google Scholar 

  10. A. M. Stalevich and A. G. Makarov, Physical Chemistry of Polymers: Symposium. Tver University, Tver (1999), Vol. 5, pp. 58-64.

    Google Scholar 

  11. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, J. Appl. Mechanics a. Techn. Phys., No. 48 (6), 897-904 (2008).>

    Article  Google Scholar 

  12. P. P. Rymkevich, A. A. Romanova, et al., Izv. Vyssh. Uchebn. Zaved., Tekhnol. Leg. Prom-sti, 16, No. 2, 70-73 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimicheskie Volokna, No. 1, pp. 31-35, January-February, 2014.

Appendix 1.

Appendix 1.

$$ \begin{array}{c}\hfill m{}_{0 n}{\tilde{W}}_{12 n}-\left({\tilde{W}}_{21 n}+{\tilde{W}}_{12 n}\right){m}_{2 n}^P={m}_{0 n}{\tilde{W}}_{12 n}-\frac{\left({\tilde{W}}_{12 n}+{\tilde{W}}_{21 n}\right){m}_{0 n}{W}_{12}}{W_{12}+{W}_{21}}={m}_{0 n}\frac{{\tilde{W}}_{12}{W}_{21}-{\tilde{W}}_{21}{W}_{12}}{W_{12}+{W}_{21}}=\hfill \\ {}\hfill ={m}_{0 n}\frac{\upnu_{0 n}^2 \exp \left(-2{H}^{*}+{U}^{*}\right)\left[ \exp \left({\upgamma}^{*}{X}^2\right)- \exp \left(-{\upgamma}^{*}{X}^2\right)\right]}{W_{12}+{W}_{21}}=\frac{2{m}_{0 n}{\upnu}_{0 n} \exp \left[-{H}_n^{*}\right]}{ \exp \left[-{U}_n^{*}\right]} sh\left({\upgamma}_n^{*}{X}^2\right).\hfill \end{array} $$
(10)

Appendix 2.

$$ \begin{array}{c}\hfill \upvarepsilon (t)=\frac{\sigma (t)}{E_0}\underset{0}{\overset{\infty }{\int }}\underset{0}{\overset{t}{\int }}\left\{ q(H) sh\left[{\upgamma}^{*}(H)\frac{\sigma^2}{E_0^2}\right]-{\upvarepsilon}_0(H)\left( \exp \left[{\upgamma}^{*}(H)\frac{\sigma^2}{E_0^2}\right]+ A(H) \exp \left[\right]\right)\right\}\times \hfill \\ {}\hfill \times \exp \left\{-\underset{\varTheta}{\overset{t}{\int }}\left(\left[{\upgamma}^{*}(H)\frac{\sigma^2}{E_0^2}\right]+ A(H) \exp \left[-{\upgamma}^{*}(H)\frac{\sigma^2}{E_0^2}\right]\right){\upnu}_0(H) \exp \left(-\frac{H}{T}\right) d\uptau \right\}{\upnu}_0(H) \exp \left(\frac{- H}{T}\right) d Hd\varTheta, \hfill \end{array} $$
(19)

where we have introduced the following notation: γ*(H) is a structure-sensitive function;

$$ \begin{array}{c}\hfill A(H)== \exp \left[ U*(H)\right]; q(H)=\frac{2\xi (H) A(H)}{1+ A(H)}; B\left( H,\sigma \right)= \exp \left[{\upgamma}^{*}(H)\frac{\sigma^2}{E_0^2}\right].\hfill \\ {}\hfill R\left( t,\varTheta \right)=\underset{0}{\overset{\infty }{\int }}\left\{ q(H) sh\left[{\upgamma}^{*}(H)\frac{\sigma^2}{E_0^2}\right]-{\upvarepsilon}_0(H) B\left[ H,\sigma \left(\varTheta \right)\right]\right\} \exp \left[-\underset{\varTheta}{\overset{t}{\int }} B\Big( H,\sigma \left(\uptau \right){\upnu}_0(H) \exp \left(-\frac{H}{T}\right) d\uptau \right]{\upnu}_0(H) \exp \left(-\frac{H}{T}\right) d H,\hfill \end{array} $$
(20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rymkevich, P.P., Gorshkov, A.S., Makarov, A.G. et al. Main Constitutive Equation of the Viscoelastic Behavior of Unixially Co-Oriented Polymers. Fibre Chem 46, 28–32 (2014). https://doi.org/10.1007/s10692-014-9555-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-014-9555-z

Keywords

Navigation