Skip to main content
Log in

PMR Study of Structural Features of Ionic Liquids Based on 1-Alkyl-3-Methylpyridinium and Mechanism of their Interaction with Cellulose

  • Published:
Fibre Chemistry Aims and scope

Ionic liquids (IL) based on 1-alkyl-3-methylpyridinium and cellulose solutions in them were studied experimentally using PMR. It was shown that the chemical shifts for H2 and H6 of the pyridine ring changed most upon changing the length of the alkyl substituent in the IL cation and in the cellulose solutions. The experimental results could be useful for explaining the interaction mechanism between natural polymers and IL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Chauvin, B. Gilbert, and I. Guibard, Chem. Commun., No. 23, 1715-1716 (1990).

  2. J. S. Wilkes and M. J. Zaworotko, Chem. Commun., No. 13, 965-967 (1992).

  3. G. Laus, G. Bentivoglio, et al., Lenzinger Ber., 84, 71-85 (2005).

    CAS  Google Scholar 

  4. P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, John Wiley & Sons, Weinheim (2008), 721 pp.

    Google Scholar 

  5. R. P. Swatloski, R. D. Rogers, and J. D. Holbrey, Pat. WO 2003029329 A2, IPC C08J, “Dissolution and Processing of Cellulose Using Ionic Liquids,” Apr. 10, 2003.

  6. C. Cuissinat, P. Navard, and T. Heinze, Carbohydr. Polym., 72, 590-596 (2008).

    Article  CAS  Google Scholar 

  7. L. Jin, P. Howlett, et al., J. Mater. Chem., 21, 10171-10178 (2011).

    Article  CAS  Google Scholar 

  8. D. Han and K. H. Row, Molecules, No. 15, 2405-2426 (2010).

  9. H. Olivier-Bourbigou, L. Magna, and D. Morvan, Appl. Catal., A, No. 1-2, 1-56 (2010).

  10. H. Ohno, Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, New Jersey (2005), p. 377.

    Book  Google Scholar 

  11. R. J. Soukup-Hein, M. M. Warnke, and D. W. Armstrong, Anal. Chim. Acta, 661, No. 1, 1-16 (2010).

    Article  Google Scholar 

  12. M. J. Earle and K. R. Seddon, Pure Appl. Chem., 72, No. 7, 1391-1398 (2000).

    Article  CAS  Google Scholar 

  13. R. D. Rogers and K. R. Seddon, Science, 302, 792-793 (2003).

    Article  Google Scholar 

  14. S. S. Y. Tan and D. R. MacFarlane, Top. Curr. Chem., 290, 311-339 (2010).

    Article  Google Scholar 

  15. R. P. Swatloski, S. K. Spear, et al., J. Am. Chem. Soc., 124, 4974-4975 (2002).

    Article  CAS  Google Scholar 

  16. T. Heinze, K. Schwikal, and S. Barthel, Macromol. Biosci., No. 5, 520-525 (2005).

  17. E. S. Sashina and N. P. Novoselov, Zh. Obshch. Khim., 79, No. 6, 1057-1062 (2009).

    CAS  Google Scholar 

  18. M. L. T. N. Basa, Ionic Liquids: Solvation Characteristics and Cellulose Dissolution, Toledo (2010), 179 pp.

  19. E. S. Sashina, D. A. Kashirskii, et al., Zh. Obshch. Khim., 82, No. 12, 2040-2045 (2012).

    Google Scholar 

  20. C. Graenacher, US Pat. No. 1,943,176, “Cellulose Solution,” Jan. 9, 1934.

  21. J. R. Harjani, R. D. Singer, et al., Green Chem., No. 11, 83-90 (2009).

  22. A. B. Pereiro, A. Rodriguez, et al., J. Chem. Eng. Data, No. 56, 4356-4363 (2011).

  23. N. V. Sastry, N. M. Vaghela, et al., J. Colloid Interface Sci., No. 371, 52-61 (2012).

  24. E. S. Sashina, D. A. Kashirskii, and E. V. Martynova, Zh. Obshch. Khim., 82, No. 4, 643-649 (2012).

    Google Scholar 

  25. Y. Fukaya, K. Hayashi, et al., Green Chem., No. 10, 44-46 (2008).

  26. A. Kokorin, Ionic Liquids: Applications and Perspectives, InTech, Rijeka, Croatia (2011), p. 674.

    Book  Google Scholar 

  27. Z. Shengdong, W. Yuanxin, et al., Green Chem., No. 8, 325-327 (2006).

  28. M. Gericke, P. Fardim, and T. Heinze, Molecules, No. 17, 7458-7502 (2012).

  29. T.-J. Park, S. Murugesan, and R. J. Linhardt, ACS Symposium Series No. 1017, Am. Chem. Soc., Washington (2009), pp. 133-152.

  30. T. Erdmenger, C. Haensch, and R. Hoogenboom, Macromol. Biosci., No. 7, 440-445 (2007).

  31. N. P. Novoselov, E. S. Sashina, et al., Khim. Volokna, No. 2, 51 (2007).

  32. R. C. Remsing, R. P. Swatloski, et al., Chem. Commun., 1271-1273 (2006).

  33. L. Feng and Z. Chen, J. Mol. Liq., No. 142, 1-5 (2008).

  34. B. Philipp, H. Schleicher, and W. Wagenknecht, Cellul. Chem. Technol., 12, No. 5, 529-552 (1978).

    CAS  Google Scholar 

  35. J. Zhang, H. Zhang, et al., Phys. Chem. Chem. Phys., No. 12, 1941-1947 (2010).

  36. H. Shimura, M. Yoshio, et al., J. Am. Chem. Soc., 130, 1759-1765 (2008).

    Article  CAS  Google Scholar 

  37. M. R. Chierotti and R. Gobetto, Chem. Commun., 1621-1634 (2008).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimicheskie Volokna, No. 5, pp. 9-14, September—October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sashina, E.S., Kashirskii, D.A. & Jankowski, S. PMR Study of Structural Features of Ionic Liquids Based on 1-Alkyl-3-Methylpyridinium and Mechanism of their Interaction with Cellulose. Fibre Chem 45, 268–273 (2014). https://doi.org/10.1007/s10692-014-9525-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-014-9525-5

Keywords

Navigation