Skip to main content

Advertisement

Log in

Overview of Poly(lactic acid) (PLA) Fibre

Part I: Production, Properties, Performance, Environmental Impact, and End-use Applications of Poly(lactic acid) Fibres

  • Published:
Fibre Chemistry Aims and scope

Poly(lactic acid) (PLA), the first melt-processable synthetic fibre produced from annually renewable resources, combines ecological advantages with excellent performance in textiles. PLA successfully bridges the gap between synthetic and natural fibres and finds a wide range of uses, from medical and pharmaceutical applications to environmentally benign film and fibres for packaging, houseware, and clothing. Ease of melt processing, unique property spectrum, renewable source origin, and ease of composting and recycling at the end of its useful life has led to PLA fibres finding growing interest and acceptance over a range of commercial textile sectors. Our review of poly(lactic acid) (PLA) fibre is divided into two parts. Part I of this review gives information about production, properties, performance, environmental impact, and enduse applications of PLA fibres. The aim of Part II is to review the wet processing (pretreatment, dyeing, clearing, subsequent finishing treatments, washing, etc.) of PLA fibre and its effects on the fibre. These were accomplished through a broad literature survey, including recent research and development in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. E. Drumright, P. R. Gruber and D. E. Henton, Adv. Mater., 12 (No. 23), 1841 (2000).

    Article  CAS  Google Scholar 

  2. J. S. Dugan, Novel Properties of PLA fibers, Research Fiber Innovation technology, Inc, INTC 2000, Texas, USA, http://www.fitfibers.com/publications.htm, 2000.

  3. D. J. Sawyer. Nonwovens World, 10 (2), 49 (2001).

    Google Scholar 

  4. W. Hoogsteen, A. R. Postema, A. J. Pennings, G. T. Brinke, and P. Zugen. Macromolecules, 23, 634 (1990).

    Article  CAS  Google Scholar 

  5. H. Tsuji and Y. Ikada, J. Appl. Polym. Sci., 67, 405 (1998).

    Article  CAS  Google Scholar 

  6. L. I. Palade, H. J. Lehermeier, and J. R. Dorgan, Macromolecules, 34, 1384 (2001).

    Article  CAS  Google Scholar 

  7. S. Jacobsen, P. Degée, and H.G. Fritz, Polym. Eng. Sci., 39(7), 1311 (1999).

    Article  CAS  Google Scholar 

  8. H. R. Kricheldorf, Chemosphere, 43, 49 (2001).

    Article  CAS  Google Scholar 

  9. E. S. Lipinsky and R. G. Sinclair, Chem. Eng. Prog., 82(8), 26 (1986).

    CAS  Google Scholar 

  10. M. Vert, G. Schwacch, and J. Coudane, J. Macromol. Sci. Pure., A32, 787 (1995).

    Article  CAS  Google Scholar 

  11. J. Lunt, Int. Fiber J., 15(3), 48 (2000).

    Google Scholar 

  12. B. Linnemann, M, S. Harwoko, T. Gries. Chemical Fibers International, Vol. 53, December 2003, 426-433.

    CAS  Google Scholar 

  13. M. Dartee, J. Lunt, and A. Shafer, Man-Made Fiber Year Book, August, 29 (2001).

  14. R. S. Blackburn, “Biodegradable and sustainable fibres,” Woodhead Publishing Limited, 2005.

  15. P. Gruber and M. O’ Brien, Polylactides “NatureWorksTM PLA,” Biopolymers, Polyester III: Applications and Commercial Products, 2002.

  16. C. Lui, JCNN News Summaries - Japan Corporate News Network, Apr 5, 2006.

  17. K. Yoshikazu, Dyeing Ind., 46(No.12), 563 (1998).

    Google Scholar 

  18. M. Kenjiro, High Polym., Japan, 52(No.11), 840 (2003).

    Google Scholar 

  19. A. K. Agrawal and R. Bhalla, J Macromol. Sci., Part-C Polym. Rev., C43(No.4), 479 (2003).

    CAS  Google Scholar 

  20. Asian Textile Business, 564, November, 19 (2001).

  21. M. Matsui, Chem. Fibers Int., 46(No.6), 318 (1996).

    Google Scholar 

  22. Chem. Fibers Int., 48(No.2), 89 (1998).

  23. M. Dartee, J. Lunt, and Shafer, Chem. Fibers Int., 50(No.6), 546 (2000).

    CAS  Google Scholar 

  24. R. Hagen, Man-Made Year Book, Chem. Fibers Int., 6 (2001).

  25. K. Yamanaka, Chem. Fibers Int., 49(No.6), 501 (1999).

    CAS  Google Scholar 

  26. P.A. Koch, Chem. Fibers Int., 53(December), 426 (2003).

    Google Scholar 

  27. C. Woodings, Nonwovens World, 10(2), 71 (2001).

    Google Scholar 

  28. J. Lunt and A. Shafer, J. of Ind. Text., 29, 191 (2000).

    Article  CAS  Google Scholar 

  29. S. S. Mahish and V. Agarwal, Asian Text. J., 10(12), 42 (2001).

    Google Scholar 

  30. R. Hagen, Chem. Fibers Int., 50, 540 (2000).

    CAS  Google Scholar 

  31. E. Gross, Text. World, 150(2), 76 (2002).

    Google Scholar 

  32. From Corn to Plastics. http://www.natureworksllc.com, Polymer Information, IngeoTM fi ber technical information, January 2003.

  33. D. J. Sawyer, Macromol. Symp., 201, 271 (2003).

    Article  CAS  Google Scholar 

  34. J. Lunt, Text. Mag., No.3, 15 (2004).

  35. J. C. Bogaert and P. Coszach, Nonwovens World, 9, 83 (2000).

    Google Scholar 

  36. W. Zhong, J. Ge, Z. Gu, W. Li, X. Chen, Y. Zang, Y. Yang, J. of Appl. Polym. Sci., 74, 2546 (1999).

    Article  CAS  Google Scholar 

  37. L. R. G. Treloar, “Introduction to Polymer Science,” The Wykeham Science Series, Wykeham Publications (London) Ltd, 1970.

  38. J. R. Dorgan, H. J. Lehermeier, L. Palade, and J. Cicero, Macromol. Symp., 175, 55 (2001).

    Article  CAS  Google Scholar 

  39. Cargill, Inc., US Patent #5142023.

  40. S. Jacobsen, H.G. Fritz, P. Degée, P. Dubois, and R. Jérôme, Ind. Crops Prod., 11, 265 (2000).

    Article  CAS  Google Scholar 

  41. K.E. Perepelkin, Fibre Chem., 34(No.2), 85 (2002).

    Article  CAS  Google Scholar 

  42. M. H. Hartman, “Biopolymers from renewable resources,” Berlin:Springer, 1998.

  43. G. Schmack, B. Tändler, R. Vogel, R. Beyreuther, S. Jacobsen, and H. G. Fritz, J. Appl. Polym. Sci., 73, 2785 (1999).

    Article  CAS  Google Scholar 

  44. J. Suesat, Ph.D. Dissertation, UMIST, Manchester, 2004.

  45. D. Farrington, Private Communication, NatureWorks LLC.

  46. S. Brochu, R. E. Prud’homme, I. Barakat, and R. Jérôme, Macromolecules, 28, 5230 (1995).

    Article  CAS  Google Scholar 

  47. H. Tsuji and Y. Ikada, Macromolecules, 26, 6918 (1993).

    Article  CAS  Google Scholar 

  48. T. Okihara, M. Tsuji, A. Kawaguchi, and K. I. Katayama, J. Macromol. Sci.-Phys., B30(1&2), 119 (1991).

    Article  Google Scholar 

  49. J. Lunt, Polym. Degrad. Stab., 59, 145 (1998).

    Article  CAS  Google Scholar 

  50. K. Sawada and M. Ueda, Dyes Pigments, 74, 81 (2007).

    Article  CAS  Google Scholar 

  51. E. T. H. Vink, K. R. Rabago, D. A. Glassner, and P. R. Gruber, Polym. Degrad. Stab., 80(3), 403 (2003).

    Article  CAS  Google Scholar 

  52. Information from NatureWorks LLC, www.natureworksllc.com .

  53. S. Jacobsen, H.G. Fritz, Ph. Degée, Ph. Dubois, and R. Jérôme, Polymer, 41, 3395 (2000).

    Article  CAS  Google Scholar 

  54. C. Hawkyard, “Synthetic fi bre dyeing,” Society of Dyers and Colourists, 2004.

  55. E. T. H. Vink, K. R. Rabago, D. A. Glassner, B. Springs, R. P. O’Connor, J. Kolstad, and P. R. Gruber, Macromol. Biosci., 4, 551 (2004).

    Article  CAS  Google Scholar 

  56. J. R. Dorgan and D. Knauss, Environmentally Benign Polymeric Packaging Materials from Renewable Resources. www.es.epa.gov, Progress Report 2000.

  57. J. R. Dorgan, “3rd Annual green chemistry and engineering conference proceedings” (Washington, D. C.), Poly (lactic acid) Properties and Prospects of an Environmentally Benign Plastic, p.145, 1999.

  58. D. L. Kirschbaum, “Fiber Producer/Textile Industry Conference”, Clemson Univ., Greenville, USA, October 24-25, p.1, 2000.

  59. J. Yu, J. of China Text. Univ., 16 (Eng.), 1, 59 (1999).

    CAS  Google Scholar 

  60. M. Dauner and H. Planck, Text. Asia, 30(2), 33 (1999).

    Google Scholar 

  61. S. K. Varshney, O. Hnojewyj, J. Zhang, and P. Rivelli, US Patent Application, 0225472 (2007).

  62. L. J. Fetters, D. J. Lohse, D. Richter, T.A. Witten, and A. Zirkel, Macromolecules, 27, 4639 (1994).

    Article  CAS  Google Scholar 

  63. H. Tsuji and K. Sumida, J. Appl. Polym. Sci., 79, 1582 (2001).

    Article  CAS  Google Scholar 

  64. N. C. Bleach, K. E. Tanner, M. Kellomaki, and P. Tormala,, J. Mater. Sci.: Mater. Med., 12, 911 (2001).

    Article  CAS  Google Scholar 

  65. Y. Ikada and H.Tsuji, Macromol. Rapid Commun., 21, 117 (2000).

    Article  CAS  Google Scholar 

  66. H. J. Lehermeier, J. R. Dorgan, and D. Way, J. Membr. Sci, 190, 243 (2001).

    Article  CAS  Google Scholar 

  67. B. C. Benicewicz, and P. K. Hopper, J. Bioact. Comp. Polym., 5, 453 (1995).

    Article  Google Scholar 

  68. M. Vert, Macromol. Symp., 153, 333 (2000).

    Article  CAS  Google Scholar 

  69. H. Tsuji, “Polylactides”, in: Biopolymers. Polyesters III. Applications and Commercial Products, 1st edition, Wiley-VCH Verlag GmbH, Weinheim, p.129-177, 2002.

  70. Y. Ikada, Adv. Eng. Mater., 1, 67 (1999).

    Article  CAS  Google Scholar 

  71. A. G. A. Coombes and M. C. Meikle, Clin. Mater., 17, 35 (1994).

    Article  CAS  Google Scholar 

  72. T. Ouchi and Y. Ohya, J. Polym. Sci., Part A: Polym. Chem., 42, 453 (2004).

    Article  CAS  Google Scholar 

  73. M. Hiljanen-Vainio, P. Varpomaa, J. Seppala, and P. Tormala, Macromol. Chem. Phys., 197, 1503 (1996).

    Article  CAS  Google Scholar 

  74. A. C. Albertsson and I. K.Varma, Biomacromolecules, 4, 1466 (2003).

    Article  CAS  Google Scholar 

  75. P. Mainil-Varlet, R. Curtis, and S. Gogolewski, J. Biomed. Mater. Res., 36, 360 (1997).

    Article  CAS  Google Scholar 

  76. A. G. A. Coombes and J. D. Heckman, Biomaterials, 13, 297 (1992).

    Article  CAS  Google Scholar 

  77. H. Tsuji, Polymer, 41, 3621 (2000).

    Article  CAS  Google Scholar 

  78. S. Hsu and W. C. Chen, Biomaterials, 21, 359 (2000).

    Article  CAS  Google Scholar 

  79. M. H. Hartmann, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 40, 570 (1999).

    CAS  Google Scholar 

  80. R. Auras, B. Harte, and S. Sekle, Macromol. Biosci., 4, 835 (2004).

    Article  CAS  Google Scholar 

  81. K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, Polymer, 36, 837 (1995).

    Article  CAS  Google Scholar 

  82. R. A. Zoppi, S. Contant, E. A. R. Duek, F. R. Marques, M. L. F. Wada, and S. P. Nunes, Polymer, 40, 3275 (1999).

    Article  CAS  Google Scholar 

  83. N. N., Med. Text., 18, November, 5 (1998).

  84. D. A. Wood, Int. J. Pharm., 7, 1 (1980).

    Article  CAS  Google Scholar 

  85. B. Gupta, N. Revagade, and J. Hilborn, Prog. Polym. Sci., 32, 455 (2007).

    Article  CAS  Google Scholar 

  86. M. J. D. Eenink, J. Feijien, J. Olijslager, J. H. M. Albers, J. C. Rieke, and P. J. Greidanus, J. Contr. Rel., 6, 225 (1987).

    Article  CAS  Google Scholar 

  87. O. Laitinen, P. Tormala, R. Taurio, K. Skutnabb, K. Saarelainen, and T. Iivonen, Biomaterials, 13, 1012 (1992).

    Article  CAS  Google Scholar 

  88. D. H. Müler and A. Krobjilowski, Nonwovens World, 11, 62 (2002).

    Google Scholar 

  89. T. Jin and H. Zhang, J. Food Sci., 73, M127 (2008).

    Article  CAS  Google Scholar 

  90. M. Mutsuga, Y. Kawamura, and K. Tanamoto, Food Additives Contam., 25, 1283 (2008).

    Article  CAS  Google Scholar 

  91. J. Baillie, Packag. Week, 13, 1997.

  92. R. Hagen, Chem. Fibers Int., 50, December, 540 (2000).

    CAS  Google Scholar 

  93. J. S. Dugan, Int. Nonwovens J., 10(3), 29 (2001).

    CAS  Google Scholar 

  94. Int. Fiber J., 15(6), 70 (2000).

  95. Text. Mon., Jul/Aug, 18 (2001).

  96. M. Dartee, “Man-Made Fibres Congress,” Dorbirn, Austria, September 19-21, 2001.

  97. J. Lunt, Tech. Text. Int., 9(10), 11 (2000).

    Google Scholar 

  98. R. R. Bommu, T. Nakamura, K. Ishii, H. Kubokawa, K. Mogi and Y. Kamiishi, “AATCC International Conference and Exhibition,” 2001.

  99. M. Matsui and Y. Kondo, “35th International Man-Made Fibers Congress,” Dorbin/Austria, September 25–27, p.1-10, 1996.

  100. S. Li, M. Tenon, H. Garreau, C. Braud, and M. Vert, Polym. Degrad. Stab., 67, 85 (2000).

    Article  CAS  Google Scholar 

  101. J. J. Kolstad, J. Appl. Polym. Sci., 62, 1079 (1996).

    Article  CAS  Google Scholar 

  102. K. Jamshidi, S. H. Hyon, and Y. Ikada, Polymer, 29, 2229 (1988).

    Article  CAS  Google Scholar 

  103. A. Södergård and M. Stolt, Prog. Polym. Sci., 1123 (2002).

  104. H. Tsuji and Y. Ikada, Polymer, 36(14), 2709 (1995).

    Article  CAS  Google Scholar 

  105. R. A. Auras, B. Harte, S. Selke, and R. J. Herandez, “WMU Barrier Coating Symposium,” Michigan, USA, 2002.

  106. IngeoTM Fibres bring natural performance – low odor. Testing by Odor Science and Engineering Inc., Tech. Bull., 290904.

  107. H. M. Behery, “Effect of mechanical and physical properties on fabric hand,” Woodhead Publishing Limited, 2005.

  108. Fibre and Fabrics Properties Comparison. Fibers Information, IngeoTM fi ber technical information, March 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Avinc.

Additional information

Published in Khimicheskie Volokna, No. 6, pp. 50-56, November-December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avinc, O., Khoddami, A. Overview of Poly(lactic acid) (PLA) Fibre. Fibre Chem 41, 391–401 (2009). https://doi.org/10.1007/s10692-010-9213-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-010-9213-z

Keywords

Navigation