Skip to main content
Log in

Neural network models for predicting the properties of chemical compounds

  • Published:
Fibre Chemistry Aims and scope

Neural networks are a universal tool used to investigate the dependences between the structure of organic compounds and a broad spectrum of their physicochemical properties. The potential of neural network modeling is not yet exhausted, as the increasing number of publications on their use indicates. Neural network models can solve both classification (for a discrete set of values of the modeled property) and regression problems (for continuous values of the modeled property). The reason for the popularity of neural network models in applied research is their clarity and the fact that no deep knowledge of mathematical statistics is required for their effective use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zupan and J. Gasteiger, Neural Networks for Chemists, National Institute of Chemistry, Slovenia (1993).

    Google Scholar 

  2. J. Gasteiger, Computer-Chemie-Centrum and Institute for Organic Chemistry, University of Erlangen-N•rnberg, Germany.

  3. R. Hecht-Nielsen, “Counterpropagation networks,” in: Proceedings of the IEEE First International Conference on Neural Networks, M. Caudill and C. Butler (eds.), Vol. 2, SOS Printing, San Diego, CA (1987), pp. 19–32.

    Google Scholar 

  4. R. Hecht-Nielsen, Appl. Optics, No. 26 (23), 4979–4984 (1987).

  5. R. Hecht-Nielsen, Neural Networks, No. 1, 131–139 (1988).

  6. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim (2000).

    Google Scholar 

  7. N. Majcen and J. Zupan, Anal. Chem. (Wash.) (Print ed.), 67, 2154–2161 (1995).

    CAS  Google Scholar 

  8. J. Gasteiger, “Neural networks with counterpropagation learning strategy used for modelling,” Chemometr. Intell. Lab. Syst. [Print ed.], 27, 175–187 (1995).

    Article  Google Scholar 

  9. J. Zupan, “Counterpropagation learning strategy in neural networks and its application in chemistry. V,” in: Further Advances in Chemical Information, H. Collier (ed.), Special Publication No. 142, Royal Soc. Chem., Cambridge (1994), pp. 92–108.

    Google Scholar 

  10. M. Novic and M. Vracko, “Artificial neural networks in molecular structures — property studies. V, in: Nature-inspired Methods in Chemometrics: Genetic Algorithms and Artificial Neural Networks, (Data Handling in Science and Technology, 23), R. Leardi (ed.), Elsevier, Amsterdam (2003), pp. 231–256.

    Chapter  Google Scholar 

  11. M. Vracko, Current Computer-Aided Drug Design [Print ed.], 90, No. 1, 84–91 (2008).

    Google Scholar 

  12. M. Vracko, SAR QSAR Environ. Res., 17, No. 3, 265–284 (2006).

    Article  CAS  Google Scholar 

  13. I. Kuzmanovski and M. Novic, Chemometr. Intell. Lab. Syst. [Print ed.], 90, No. 1, 84–91 (2008).

    Article  CAS  Google Scholar 

  14. M. Novic and J. Zupan, Vestn. Slov. Kem. Dru•. (Doc. Chem. Yugoslavica), 39, No. 2, 195–212 (1992) [COBISS.SI-ID 32664576].

    CAS  Google Scholar 

  15. J. Gasteiger, Li Xinzhi, V. Simon, et al., J. Mol. Struct. [Print ed.], 292, 141–160 (1993) [COBISS.SI-ID 842266].

    Article  CAS  Google Scholar 

  16. M. Novic and J. Zupan, J. Chem. Inf. Comput. Sci., 35, 454–466 (1995).

    CAS  Google Scholar 

  17. D. Brodnjak-Voncina, D. Dobcnik, et al., Chemometr. Intell. Lab. Syst. [Print ed.], No. 47, 79–88 (1999) [COBISS.SI-ID 4318742].

  18. Y. V. Heyden, P. Vankeerberghen, et al., Talanta (Oxford) [Print ed.], 51, 455–466 (2000) [COBISS.SI-ID 2130458].

    Article  Google Scholar 

  19. J. Zupan, M. Novic, and I. Ruisanchez, Chemometr. Intell. Lab. Syst. [Print ed.], 38, 1–23 (1997).

    Article  CAS  Google Scholar 

  20. M. Novic, “Kohonen and counterpropagation neural networks applied for mapping and interpretation of IR spectra, V,” in: Artificial Neural Networks: Methods and Applications, D. Livingstone (ed.), Humana Pres (2007).

  21. J. Lozano, M. Novi_, et al., Chemometr. Intell. Lab. Syst. [Print ed.], 28, 61–72 (1995). Use of neural networks in gas chromatography presented in the work

    Article  CAS  Google Scholar 

  22. M. Pompe, M. Razinger, et al., Anal. Chim. Acta [Print ed., 348, 215–221 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimicheskie Volokna, No. 3, pp. 82–86, May–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorova, N., Zupan, Y., Novic, M. et al. Neural network models for predicting the properties of chemical compounds. Fibre Chem 40, 281–286 (2008). https://doi.org/10.1007/s10692-008-9049-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-008-9049-y

Keywords

Navigation