Skip to main content
Log in

Current trends in the design of gas-diffusion layers for fuel cells

  • Published:
Fibre Chemistry Aims and scope

The fundamental trends in the design of porous materials (composites) used as gas-diffusion layers (GDL) for fuel cells (FC) were examined. It was shown that the evolution of the FC market has made it necessary to develop manufacturing processes for production of GDL with optimum specifications that provide for mass production of GDL at low cost. It was shown that the current design of GDL emerged from the technical region of basic functionality into the space defined by the vectors of modern technologies and economic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballard, http://www.ballard.com.

  2. U. S. Department of Energy. Hydrogen Program. http://www.hydrogen.energy.gov/annual_progress07_fuelcells.html, Annual Progress Report. V Fuel Cell, pp. 278–279, 700–704, 680–684, 1281 (2007).

  3. W. Vielstich, H. A. Gasteiger, and A. Lamm (eds.), Handbook of Fuel Cells — Fundamentals, Technology, and Applications, Vol. 3, Fuel Cell Technology and Applications, Chapter 46. M. Mathias, J. Roth, et al., “Diffusion Media Materials and Characterization, Wiley, New York (2003), pp. 1–21.

    Google Scholar 

  4. The European Hydrogen and Fuel Cell Technology Platform, https://www.hfpeurope.org/hfp/keydocs.

  5. Cool Fuel Cells, http://science.nasa.gov/headlines/y2003/18mar_fuelcell.htm.

  6. TGP-H Carbon Fiber Paper, http//www.toray-auto.us/products/carbon_papers_fuel_cells.html.

  7. A. A. Lysenko, V. A. Lysenko, and A. A. Tarasenko, “Gas-diffusion electrodes for fuel cells,” in: Proceedings of the International Conference and Show “Fibre Materials of the 21st Century, St. Petersburg, May 23–28, 2005 [in Russian], SPSUTD, St. Petersburg (2005), pp. 246–256.

    Google Scholar 

  8. J. Crawford, J. F. LeCostaoiec, and P. T. Kennedy, Pitch-based Graphite Fabrics and Needle Punched Felts for Fuel Cell Gas Diffusion Layer Substrates and High Thermal Conductivity Reinforced Composites, US Patent No. 6783851.

  9. A. A. Lysenko, Tekhn. Tekstil', No. 12, 33–37 (2005).

  10. H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes, N. P., New Jersey (1993), p. 384.

    Google Scholar 

  11. Carbon Fiber. Fuel Cell. Electrospinning. http://en.wikipedia.org.

  12. A. A. Lysenko, V. A. Lysenko, et al., “Conducting activated carbon fibres: fabrication and properties (summaries),” Book of Abstracts, 9th International Conference on Fundamentals of Adsorption, Giardini Naxos, Sicily (May 20–25, 2007), p. 408.

    Google Scholar 

  13. Applications. Ordering. www.inorganicspecialists.com/ordering.html.

  14. R. J. Wayne, Perforated Flexible Graphite Gas Diffusion Layers: Processing, Properties and Performance, Graf Tech International Ltd. www.emtec.org/are/events/mea07/media/Session%201/3rd MEA_GDL_Wayne.ppt.

  15. L. Bai and G. A. Lloyd, Fuel Cell Having Metallized Gas Diffusion Layer, US Patent No. 7056613.

  16. S. Anh and B. J. Tatarchuk, J. Appl. Electrochem., 27, 8–17 (1997).

    Google Scholar 

  17. Advanced Fiber Nonwoven. Applications. EMI Shielding and ESD. www.hollingsworth-vose.com/products/afn/applications/EMI_Shielding_ESD.html.

  18. B. Pivovar, Y. S. Kim, et al., Water Transport Exploratory Studies, Los Alamos National Lab (2007), Mukundan Rangachary, http://www.eere.energy.gov/hydrogenandfuel cells/pdfs/new_fc_borup_lanl.pdf.

  19. SIGRACET Fuel Cell Components. http://www.sglcarbon.com/sgl_t/fuelcell.

  20. A. A. Lysenko, V. A. Lysenko, and A. A. Tarasenko, Khim. Volokna, No. 2, 55–58 (2007).

  21. M. Suha Yazici, F. Frate, and R. Wayne, Properties and Performance of Expanded Graphite Gas Diffusion Layers. Fuel Cell. Seminar. November 13, 2006. www.fuelcellseminar.com/pdf/2006/Tuesday/3A/YAZICI_Suha_0210_3A_655(rv3).pdf.

  22. Carbon Nanofoams. www.mkt-intl.com

  23. S. Arisetty, A. K. Prasad, and S. G. Advani, J. Power Sources, 165, 49–57 (2007).

    Article  CAS  Google Scholar 

  24. Carbon Nanotube Based Nanocomposite Paper Energy Storage May Replace Batteries. http://www.azonano.com/new.asp?news1D=4710.

  25. Toray Industries Develop NanoMATRIX and Nanotechnology Treatment for Textiles. http://www.azonano.com/news.asp?newsID=388.

  26. Nanotechnology. Nano-Fiber. Nano-Multilayer Film. Nano-Alloy. http://www.toray.com/technology/nano/index.html.

  27. J. Lallo, Fuel Cell System Implementation, Start-Up and Test in Airbus. www.fuelcellseminar.com/2007_presentations.asp.

  28. J. W. Weidner, V. A. Sethuraman, and J. W. Van Zee, “Engineering a membrane electrode assembly,” The Electrochemical Society Interface (Winter 2003), pp. 40–43.

  29. Gas Diffusion Layer Developed for Proton Exchange Membrane Fuel Cells. www.mrc.co.jp/english/pressroom/p02/press2002_9.html.

  30. Ce Tech. http://www.ce-tech.com.tw.

  31. About E-TEK. http://www.etek-inc.com/inside/index.php.

  32. A. M. Kannan, A. Menghal, and I. V. Barsukov, Electrochem. Commun., 8, No. 5, 887–891 (2006).

    Article  CAS  Google Scholar 

  33. A. Taniguchi and K. Yasuda, J. Appl. Polym. Sci., 100, No. 3, 1748–1753.

  34. J. Yu, Y. Yoshikawa, et al., Electrochem. Solid-State Lett., 8, No. 3, A152–A155 (2005).

    Article  CAS  Google Scholar 

  35. V. Vatanatham, Y. Song, et al., Methods for Manufacturing Diffusion Layers for PEMFCs. www.electrochem.org/dl/ma/201/pdfs/0029.pdf.

  36. Z. Jang Bor, Aruna Zhamn, and James Guo, “Manufacturing integrated diffuser-bipolar plates for PEM fuel cells, in: 3rd MEA Manufacturing Symposium, Dayton, Ohio, August 21–23, 2007. http://www.emtec.org/are/events/mea07/.

  37. M. A. Müller, C. Müller, et al., Microsystem Technol., 11, No. 4–5, 280–281.

  38. S. Gambursev and A. J. Appleby, Integrity and Interfaces of Membrane and Electrodes Assembly: Influence of Polymer Electrolyte Fuel Cell Performance. http://www.electrochem.org/dl/ma/201/symposia/pib1.htm.

  39. K. Yoshizawa, K. Ikezoe, et al., J. Electrochem. Soc., 155, No. 3, B223–B227 (2008).

    Article  CAS  Google Scholar 

  40. M. Maeda, H. Hamada, et al., Analysis of Water Distribution in a Gas Diffusion Layer Using X-ray Computed Tomography. http://edsmeet6.peerx-press.org/ms_files/ecsmeet6/2007/05/17/00001183/00/1183_0_art_1_ji7qis_enpdf.pdf.

  41. Development of Two-phase Flow Simulation. Annual Report 2006. www.mech.kyushu-u.ac.jp/lab/ki06/index.html.

  42. J. V. Cole and A. Gidwani, “Water transport in PEM fuel cells: advanced modeling, material selection, testing, and design optimization,” prepared for; DOE Hydrogen Fuel Cell Kickoff Meeting, February 13, 2007. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/new_fc|cole|cfd.pdf.

  43. T. Hottinen and O. Himanen, Electrochem. Commun., 9, No. 5, 1047–1052 (2007).

    Article  CAS  Google Scholar 

  44. P. K. Sinha, P. P. Mukherjee, and C. Y. Want, J. Mater. Chem., 17, 3089–3103 (2007).

    Article  CAS  Google Scholar 

  45. A. Schmitz, M. Tranitz, et al., J. Power Sources, 154, No. 2, 437–447 (2006).

    Article  CAS  Google Scholar 

  46. R. Borup, R. J. Mukundan, et al., Water Transport Exploratory Studies. 2007 Fuel Cell Seminar. www.fuelcellseminar.com/2007_presentations.asp.

  47. C. Lim and C. Y. Wang, Electrochim. Acta, 49, 4149–4156 (2004).

    Article  CAS  Google Scholar 

  48. D. Wood, J. Davey, et al., “Effects of long-term PEMFC operation on gas diffusion layer and membrane electrode assembly physical properties,” in: Proceedings of the 206th Meeting of the Electrochemical Society, Honolulu, Hawaii (October 5, 2004).

  49. E. Endon, Progress of Highly Durable MEA for PEMFC under High Temperature and Low Humidity. www.fuelcellseminar.com/2007_presentations.asp.

  50. Technology Vision 2020. The U.S. Chemical Industry. Information Systems, pp. 43–56/http://membership.acs.org/i/iec/docs/chemvision2020.pdf.

  51. Federal Target Program “Research and Development on Priority Directions in Development of the Russian Scientific and Technical Complex for 2007–2012. www.fasi.gov.ru/fcp/compl/.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimicheskie Volokna, No. 3, pp. 44–50, May–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysenko, V.A. Current trends in the design of gas-diffusion layers for fuel cells. Fibre Chem 40, 226–233 (2008). https://doi.org/10.1007/s10692-008-9037-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-008-9037-2

Keywords

Navigation