Skip to main content
Log in

Prospects for development of phthalocyanine-containing polymeric materials

  • Published:
Fibre Chemistry Aims and scope

Ways of manufacturing polymeric phthalocyanine-containing materials in the form of fibres, films, membranes, and nanostructures, used as photosensitizers, in medicine, in solving environmental problems, and as working electrochemical elements in highly sensitive sensors and gas analyzers, are proposed. Polymer composites with incorporated phthalocyanines have high thermo-and photostable properties and low combustibility. The possibility of synthesizing phthalocyanine nanocrystals in different polymer matrices is demonstrated. These composites, which have optical homogeneity, are new optical media made from organic substances with optical and semiconductor properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Berezin, Porphyrin and Phthalocyanine Coordination Compounds [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  2. N. S. Enikolyan (ed.), Porphyrins: Structure, Properties, Synthesis [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  3. N. S. Enikolyan (ed.), Porphyrins: Spectroscopy, Electrochemistry, Use [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  4. B. D. Berezin and N. S. Enikolyan, Metalloporphyrins [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  5. C. C. Leznoff and A. B. P. Lever (eds.), Phthalocyanines: Properties and Applications, Vols. 1–4, VCH Publishers, New York (1989, 1993, 1996).

    Google Scholar 

  6. K. M. Kadish, K. M. Smith, and R. Guilard (eds.), The Porphyrin Handbook, Vols. 1–10, Academic Press, New York (2000).

    Google Scholar 

  7. K. M. Kadish, K. M. Smith, and R. Guilard, The Porphyrin Handbook, Vols. 11–20, Academic Press, New York (2002).

    Google Scholar 

  8. O. A. Golubchikov (ed.), Advances in Porphyrin Chemistry [in Russian], Vols. 1–4, Izd. NII Khimii SPbGU, St. Petersburg (2004).

    Google Scholar 

  9. L. R. Milgrom, The Coulours of Life, Oxford University Press, Oxford (1997).

    Google Scholar 

  10. N. V. Konovalova, R. P. Evstigneeva, and V. N. Luzgina, Usp. Khim., 70, No. 11, 1059 (2001).

    Google Scholar 

  11. M. I. Shtilman, Immobilization on Polymers, VSP, Utrecht-Tokyo (1991).

    Google Scholar 

  12. F. P. Montforts, B. Gerlach, and F. Hoper, Chem. Rev., 94, 327 (1994).

    Article  CAS  Google Scholar 

  13. R. P. Linsted and M. J. Whalley, J. Chem. Soc., 4893–4899 (1952).

  14. O. I. Koifman and T. A. Ageeva, Porphyrin Polymers [in Russian], Izd. Fiz.-Mat. Liter., Moscow (2006).

    Google Scholar 

  15. S. Adano, O. I. Koifman, and A. B. Korzhenevskii, in: Proceedings of the II International STC “Current Problems in Chemistry and Chemical Engineering — Chemistry-99 [in Russian], Ivanovo (1999), pp. 141–143.

  16. D. W•hrle, J. Porphyrins Phthalocyanines, 4, No. 4, 418–424 (2000).

    Article  Google Scholar 

  17. F. R. Hartley, Supported Metal Complexes, Reidel, Dordrecht (1985).

    Google Scholar 

  18. F. P. Sidel'kovskaya, Chemistry of N-Vinylpyrrolidone and Its Polymers [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  19. Yu. E. Kirsh, Poly-N-vinylpyrrolidone and Other Poly-N-vinylamides: Synthesis and Physicochemical Properties [in Russian], Nauka, Moscow (1998).

    Google Scholar 

  20. V. V. Lopatin and A. A. Askadskii, Polyacrylamide Hydrogels in Medicine [in Russian], Nauchnyi Mir, Moscow (2004).

    Google Scholar 

  21. J. H. Shutten, P. Piet, and A. L. German, Macromol. Chem., 180, 2341–2347 (1979).

    Article  Google Scholar 

  22. A. I. Ekimov and A. A. Onushchenko, Pis'ma ZhETF, 40, No. 8, 337–342 (1984).

    CAS  Google Scholar 

  23. I. Yu. Denisyuk and A. M. Meshkov, Opt. Zh., 68, No. 11, 58–66 (2001).

    Google Scholar 

  24. I. A. Akimov, I. Yu. Denisyuk, et al., Opt. Zh., 70, No. 2, 3–8 (2003).

    Google Scholar 

  25. I. Yu. Denisyuk and N. V. Kamanina, Opt. Spektrosk., 96, No. 2, 269–273 (2004).

    Article  Google Scholar 

  26. I. Yu. Denisyuk, I. A. Akimov, and A. M. Meshkov, Opt. Zh., 70, No. 6, 7–11 (2003).

    Google Scholar 

  27. I. A. Akimov, I. Yu. Denisyuk, and A. M. Meshkov, Opt. Spektrosk., 77, No. 6, 954–958 (1994).

    CAS  Google Scholar 

  28. Al. Al. Berlin, S. A. Vol'fson, et al., Principles of Creation of Composite Materials [in Russian], Khimiya, Moscow (1990).

    Google Scholar 

  29. S. A. Vilkova et al., Vysokomolek. Soedin., B25, No. 4, 274–277 (1983).

    Google Scholar 

  30. J. Simon and J. J. Andr•, Molecular Semiconductors, Springer, Berlin (1985).

    Google Scholar 

  31. J. M. Birchall, R. N. Hazeldine, and J. O. Morley, J. Chem. Soc., 2667–2675 (1970).

  32. M. O. Breusova, Candidate Dissertation, Moscow State University, Moscow (2007).

    Google Scholar 

  33. N. S. Zubkova and Yu. S. Antonov, Ros. Khim. Zh., 46, No. 1, 96–97 (2002).

    CAS  Google Scholar 

  34. N. S. Zubkova, N. G. Butylkina, and L. S. Gal'braikh, Khim. Volokna, No. 4, 17–33 (1999).

  35. T. L. Baranova, N. A. Smirnova, et al., Fireproof Polyester Fibres, Data Sheet, Chemical Fibre Industry Series [in Russian], NIITEKhim, Moscow (1986).

    Google Scholar 

  36. S. V. Efimova, L. V. Markova, et al., Zh. Obshch. Khim., No. 3, 17–23 (2008).

  37. L. V. Markova, G. N. Smirnova, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 35, No. 11–12, 98–103 (1992).

    CAS  Google Scholar 

  38. A. B. Korzhenevskii, G. N. Smirnova, et al., USSR Inventor's Certificate No. 1785248 (1992).

  39. H. Shirai, A. Maruyama, et al., J. Polym. Sci., Polym. Lett. Ed., 21, No. 3, 157–164 (1983).

    Article  CAS  Google Scholar 

  40. H. Shirai, A. Maruyama, et al., Makromol. Chem., 181, 1003–1008 (1980).

    Article  CAS  Google Scholar 

  41. H. Shirai, S. Higaki, et al., J. Polym. Sci., Polym. Lett. Ed., 22, No. 6, 1309–1316 (1984).

    CAS  Google Scholar 

  42. S. Higaki, K. Hanabusa, et al., Makromol. Chem., 184, 691–698 (1983).

    Article  CAS  Google Scholar 

  43. H. Tsuiki, E. Masuda, et al., Polymer, 37, No. 16, 3637–3644 (1996).

    Article  CAS  Google Scholar 

  44. A. K. Amanbaeva, Candidate Dissertation, Karaganda (2000).

  45. R. Zhou, L. Tang, et al., Makromol. Chem. Phys., 795, 2409–2416 (1994).

    Article  Google Scholar 

  46. J. H. Schutten and J. Zwart, Mol. Catal., 5, 109 (1979).

    Article  CAS  Google Scholar 

  47. M. Sanchez, N. Chap, et al., Eur. J. Inorg. Chem., 1775–1780 (2001).

  48. T. A. Yurre, L. I. Rudaya, et al., Fiz. Tekh. Poluprovod., 37, No. 7, 32–37 (2003).

    Google Scholar 

  49. V. L. Furrer, Sorovsk. Obrazovat. Zh., 8, No. 1, 38–43 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimicheskie Volokna, No. 3, pp. 38–44, May–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lbova, A.K., Vasil’ev, M.P. Prospects for development of phthalocyanine-containing polymeric materials. Fibre Chem 40, 217–225 (2008). https://doi.org/10.1007/s10692-008-9036-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-008-9036-3

Keywords

Navigation