Skip to main content
Log in

Thermostable fibres and the carbon-fibre-reinforced plastics made from them

  • Published:
Fibre Chemistry Aims and scope

Abstract

The specific features of creation of highly thermostable composite materials based on thermostable fillers and binders are examined. There has been some progress in synthesis, modification, and pilot-industrial production of polyimides that satisfy the many-sided requirements of the 21st century. The possibility of assigning products of thermochemical reactions of polymers based on polyacrylonitrile to thermostable organic compounds capable of modifying thermostable binders is discussed. The necessity of theoretical studies of modeling the thermal transformations of the initial products in composite mixtures is demonstrated. The necessity of structural orientation of macrochains of the reacting components for realization of the cocarbonization principle is substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Bessonov, M. M. Koton, et al., Polyimides — a Class of Thermostable Polymers [in Russian], Nauka, Leningrad (1983).

    Google Scholar 

  2. H. Ohya, V. V. Kudryavtsev, and S. I. Semenova, Polyimide Membranes — Applications, Fabrications, and Properties, Gordon and Breach, Kodanasha (1996).

    Google Scholar 

  3. S. E. Sroog, Prog. Polym. Sci, 16, 561–694 (1991).

    Article  CAS  Google Scholar 

  4. M. M. Koton, Zh. Prikl. Khim., 68, No. 5, 822–826 (1995).

    CAS  Google Scholar 

  5. S. E. Sroog, A. L. Endrey, et al., J. Polym. Sci. A, 34, No. 11, 2069–2086 (1996).

    Article  CAS  Google Scholar 

  6. A. V. Gribanov and Yu. N. Sazanov, Zh. Prikl. Khim., 70, No. 6, 881–902 (1997).

    CAS  Google Scholar 

  7. Yu. N. Sazanov, Zh. Prikl. Khim., 74, No. 8, 1217–1234 (2001).

    Google Scholar 

  8. K. E. Perepelkin, Past, Present, and Future of Chemical Fibres, [in Russian], MGTU, Moscow (2004).

    Google Scholar 

  9. A. L. Rusanov, T. A. Stadnik, and K. Myullen, Usp. Khim., 68, No. 8, 760–772 (1999).

    Google Scholar 

  10. A. L. Rusanov, L. B. Elshina, et al., Vysokomolek. Soedin., 41, No. 1, 7–27 (1999).

    CAS  Google Scholar 

  11. H. Hatani, Kogyo Zairyo, 45, No. 13, 42–45 (1997).

    Google Scholar 

  12. C. Feger, M. M. Khojasteh, et al., Polyimides: Trends in Materials and Applications: Proc. 5th lnt. Conf. on Polyimides, Nov. 2–4, 1994, Soc. Plast. Eng., New York (1996).

    Google Scholar 

  13. M. Ya. Goikhman, V. M. Svetlichnyi, et al., Zh. Prikl. Khim., 63, No. 1, 168–172 (1990).

    CAS  Google Scholar 

  14. N. V. Rumyantseva, V. E. Yudin, et al., Mekh. Kompoz. Mater, No. 1, 170–172 (1991).

  15. M. M. Koton and Yu. N. Sazanov, Science and Humanity 1996: International Annual [in Russian], Znanie, Moscow (1986), pp. 278–290.

    Google Scholar 

  16. E. M. Aizenshtein, Khim. Volokna, No. 5, 3–12 (1999).

  17. L. P. Perepechkin and N. P. Perepechkina, Khim. Volokna, No. 6, 3–11 (1999).

  18. H. Tatsuya and G. O. Phillips, New Fibers, Woodhead, Cambridge (1997).

    Google Scholar 

  19. A. V. Volokhina and A. M. Shchetinin, Khim. Volokna, No. 2, 3–7 (1998).

  20. K. E. Perepelkin, E. Yu. Gurova, et al., Khim. Volokna, No. 6, 43–47 (1993).

  21. T. Kunugi, Sen ’i Gakkaishi, 54, No. 4, 134–137 (1998).

    Google Scholar 

  22. G. M. Mikhailov, L. N. Korzhavin, et al., Zh. Prikl. Khim., 71, No. 12, 2040–2050 (1998).

    CAS  Google Scholar 

  23. G. M. Mikhailov, M. F. Lebedeva, et al., Zh. Prikl. Khim., 72, No. 3, 472–480 (1999).

    Google Scholar 

  24. G. I. Kudryavtsev (ed.), Reinforcing Chemical Fibres for Composite Materials [in Russian], Khimiya, Moscow (1992).

    Google Scholar 

  25. K. E. Perepelkin, Khim. Volokna, No. 4, 7–22 (2005).

  26. George Lubin (ed.), Handbook of Composites, Parts 1 and 2, Van Nostrand Reinhold, New York (1982).

    Google Scholar 

  27. K. E. Perepelkin, Khim. Volokna, No. 5, 54–69 (2005).

  28. A. A. Konkin (ed.), Heat-and Fire-Resistant and Incombustible Fibres [in Russian], Khimiya, Moscow (1978).

    Google Scholar 

  29. R. M. Aseeva, Z. S. Smutkina, et al., in: Structural Chemistry of Carbon and Coals [in Russian], V. I. Kasatochkin (ed.), Nauka, Moscow (1969), pp. 161–200.

    Google Scholar 

  30. A. A. Berlin, Some Problems in the Chemistry of Thermostable Organic Polymers [in Russian], Nauka, Moscow, (1972).

    Google Scholar 

  31. V. M. Mel’nichenko, A. M. Sladkov, and Yu. M. Nikulin, Usp. Khim., 51, No. 2, 736–763 (1982).

    CAS  Google Scholar 

  32. V. V. Korshak, Chemical Structure and Temperature Characteristics of Polymers [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  33. S. L. Madorsky, Thermal Decomposition of Organic Polymers, Wiley, New York (1964).

    Google Scholar 

  34. R. M. Levit, Development of Processes for Production, Investigation, and Use of Carbon Fibres and Fibre Materials with Adjustable Electrical Properties, Doctoral Dissertation, Moscow (1984).

  35. A. S. Fialkov, Graphite Materials [in Russian], Energiya, Moscow (1979).

    Google Scholar 

  36. D. Dollimor and G. Heal, Carbon, 5, No. 1, 65–74 (1967).

    Article  Google Scholar 

  37. A. D. Kokurin, Chemical Electrothermics and Plasma Chemistry [in Russian], Khimiya, Leningrad (1980).

    Google Scholar 

  38. I. V. Krivoshei and V. M. Skorobogatov, Usp. Khim., 50, No. 3, 746–767 (1981).

    CAS  Google Scholar 

  39. H. Rodewold, J. Chem. Z, 89, 522–531 (1965).

    Google Scholar 

  40. Yu. N. Sazanov, G. N. Fedorova, et al., Vysokomolek. Soedin., 25A, No. 5, 949–955 (1983).

    Google Scholar 

  41. H. G. Frank, Brennst. Chem., 34, 37–40 (1953).

    Google Scholar 

  42. M. A. Geidrikh, B. E. Davydov, and B. A. Krentsel’, Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 636–643 (1965).

    Google Scholar 

  43. N. Grassie and J. McGucham, Eur. Polym. J., 6, No. 9, 1277–1291 (1970).

    Article  CAS  Google Scholar 

  44. N. Grassie and J. McGucham, Eur. Polym. J., 7, No. 8, 1091–1109 (1971).

    Article  CAS  Google Scholar 

  45. N. Grassie and J. McGucham, Eur. Polym. J., 7, No. 10, 1351–1371 (1971).

    Article  Google Scholar 

  46. N. Grassie and J. McGucham, Eur. Polym. J., 8, No. 7, 865–878 (1972).

    Article  CAS  Google Scholar 

  47. P. L. Walker (ed.), Chemistry and Physics of Carbonisation, Vol. 7, Marcel Dekker, New York (1971).

    Google Scholar 

  48. I. A. Litvinov and V. A. Kargin, Vysokomolek. Soedin., 15A, No. 7, 1615–1620 (1973).

    Google Scholar 

  49. V. I. Kasatochkin, T. D. Yares’ko, et al., Vysokomolek. Soedin., 17A, No. 1, 187–191 (1975).

    Google Scholar 

  50. B. E. Davydov and B. A. Krentsel’, Vysokomolek. Soedin., 21A, No. 5, 963–978 (1979).

    Google Scholar 

  51. V. I. Frolov, A. M. Fishberg, et al., Khim. Volokna, No. 1, 225–229 (1980).

  52. M. M. Kanovich and A. P. Rudenko, Khim. Volokna, No. 3, 19–21 (1982).

  53. A. A. Lysenko and V. A. Lysenko, Kompozitn. Mir, No. 1 (4), 38–40 (2006).

  54. Y. Yasunori, Kogyo Zairyo, 45, No. 4, 99–102 (1997).

    Google Scholar 

  55. V. M. Svetlichnyi, L. A. Myagkova, et al., Vysokomolek. Soedin., 42A, No. 2, 291–299 (2000).

    Google Scholar 

  56. V. M. Svetlichnyi, T. I. Zhukova, et al., Polym. Set, 35, No. 16, 1321–1324 (1995).

    Google Scholar 

  57. M. Ya. Goykhman, V. M. Svetlichnyi, et al., Ada Montana, Ser. B, No. 7 (105), 9–19 (1997).

  58. A. V. Gribanov and Yu. N. Sazanov, Zh. Prikl. Khim., 73, No. 6, 987–991 (2000).

    CAS  Google Scholar 

  59. A. V. Gribanov and Yu. N. Sazanov, Zh. Prikl. Khim., 73, No. 10, 1705–1709 (2000).

    CAS  Google Scholar 

  60. A. V. Gribanov, Yu. N. Sazanov, et al., Zh. Prikl. Khim., 72, No. 3, 467–473 (1999).

    CAS  Google Scholar 

  61. A. V. Gribanov, Yu. N. Sazanov, et al., Zh. Prikl. Khim., 73, No. 12, 2002–2006 (2000).

    CAS  Google Scholar 

  62. I. P. Dobrovol’skaya, Yu. N. Sazanov, et al., Zh. Prikl. Khim., 79, No. 7, 1190–1192 (2006).

    Google Scholar 

  63. Yu. N. Sazanov and A. V. Gribanov, Zh. Prikl. Khim., 72, No. 11, 1896–1900 (1999).

    CAS  Google Scholar 

  64. Yu. N. Sazanov, A. V. Novoselova, et al., Zh. Prikl. Khim., 78, No. 5, 810–813 (2005).

    Google Scholar 

  65. M. V. Mokeev, A. V. Gribanov, et al., Zh. Prikl. Khim., 78, No. 7, 1165–1168 (2005).

    Google Scholar 

  66. J. U. Otaigbe, V. E. Yudin, and V. N. Artemieva, Polym. Comp., 22, No. 1, 155–164 (2001).

    Article  CAS  Google Scholar 

  67. E. N. Popova, V. E. Yudin, et al., in: Proceedings of the International Conference “Fibre Materials XXI [in Russian], St. Petersburg (May 23–28, 2005), p. 252.

  68. E. N. Popova, V. E. Yudin, et al., Zh. Prikl. Khim., 79, No. 3, 446–451 (2006).

    Google Scholar 

  69. Yu. N. Sazanov and A. B. Gribanov, Zh. Prikl. Khim., 79, No. 3, 440–445 (2006).

    Google Scholar 

  70. K. E. Perepelkin, Khim. Volokna, No. 4, 32–40 (2002).

  71. K. E. Perepelkin, Khim. Volokna, No. 1, 41–50 (2006).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimicheskie Volokna, No. 2, pp. 26–33, March–April, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gribanov, A.V., Sazanov, Y.N. Thermostable fibres and the carbon-fibre-reinforced plastics made from them. Fibre Chem 39, 122–130 (2007). https://doi.org/10.1007/s10692-007-0026-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-007-0026-7

Keywords

Navigation