Skip to main content
Log in

Prospects for development of research and production of carbon fibre sorbents

  • Published:
Fibre Chemistry Aims and scope

Abstract

Three basic directions in research on production of activated carbon fibres (ACF) are distinguished: research and process developments aimed at reducing the cost of ACF; research and process developments to obtain ACF with high and ultrahigh sorption-kinetic characteristics and other unique properties; the search for new areas of application of ACF and development of highly effective manufacturing processes using ACF. Many developments on production of sorption-active fibres are closely correlated with modernizing CF plants, searching for ways to lower the price, and improving the characteristics. A trend toward creation of specialized ACF plants based on use of technologies and precursors specially developed for this purpose has been observed in the last ten years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Sasaki, in: Materials of International Conference, Raleigh, NC (USA) (2002), pp. 15–21.

  2. A. A. Lysenko, Tekhn. Tekstil’, No. 12, 33–37 (2005).

  3. J. Pora, in: Materials of the 13th Intern. Conf. on Compos. Mater, ICCM-13, Beijing (2002), pp. 86–96.

  4. W. Keller, in: Materials of International Conference, Raleigh, NC (USA) (2002), pp. 21–24.

  5. B. Foulds, Ibid., 28–36.

  6. F. T. Taceski, Acquis. Rev. Quart, 179–194 (Spring, 1999).

  7. M. E. Kazakov, Khim. Volokna, No. 3, 8–10 (1991).

  8. Conference Information, International Carbon Conference, Oviedo, Spain (2003).

  9. Chun-Xia, Yia, Yan Ya-Ming, et al., New Carbon Mater, 16, No. 2, 61–65 (2002).

    Google Scholar 

  10. J. S. Hayes, Encycl. Chem. Technol, 16, 125–138 (1981).

    CAS  Google Scholar 

  11. S. Kosaoka, Y Sakata, et al., Intern. Chem. Eng., 29, No. 1, 101–114 (1989).

    Google Scholar 

  12. J. S. Hayes, in: Nonwoven Symposium, Geneva (2004), pp. 257–263.

  13. Peter J. F. Harris (ed.), Carbon Nanotubes and Related Structures, Cambridge University Press, Cambridge (1999).

    Google Scholar 

  14. J. P. Salvatat-Delmotte and A. Rubio, Carbon, 40, 1729–1734 (2002).

    Article  Google Scholar 

  15. Hydrogen Energetics of the Future and Platinum Group Metals: Proceedings of the International Symposium [in Russian], MIREA, Moscow (2004), p. 135.

  16. J.-P. Hughes, D. G. Glasgow, et al., JEC-Composites, No. 9, 66–70 (2004).

  17. I. N. Ermolenko and I. P. Lyubliner, VCH, FRG, 295 (1990).

  18. US Patent No. 3256206 (1966).

  19. US Patent No. 3235323 (1966).

  20. A. S. Fialkov, B. N. Smirnov, et al., Vysokomolek. Soedin., 9, No. 6, 464–467 (1969).

    Google Scholar 

  21. I. N. Ermolenko, A. A. Morozova, and M. Z. Gavrilov, Dokl. Akad. Nauk BSSR, 18, No. 3, 234–237 (1974).

    Google Scholar 

  22. L. I. Fridman, A. A. Morozova, et al., Vestsi AN BSSR, No. 20, 37–41 (1974).

  23. L. B. Adams, E. A. Boucher, and D. H. Everet, Carbon, 8, No. 6, 761–773 (1970).

    Article  CAS  Google Scholar 

  24. G. N. Arons and R. N. Macnair, Text. Res. J., 42, No. 1, 60–63 (1972).

    Article  CAS  Google Scholar 

  25. The Activated Carbon Fiber, Toyobo Product Catalogue (1993), p. 25.

  26. Toho’s Activated Carbon Fiber “KURACTIVE”, Toho Raylon Co. Ltd. Product Catalogue (1992), p. 18.

  27. Activated Carbon Fiber, American Kynol Product Catalogue (2002), p. 21.

  28. Activated Carbon Fiber, Osaka Gas Co. Ltd. Product Catalogue (1992), p. 15.

  29. J. Economy, M. Daley, and C. L. Mangun, Divis. Fuel Chem., 41(1), 321–325 (1996).

    CAS  Google Scholar 

  30. M. G. Abdallah, in: Materials of International Conference, Raleigh, NC (USA) (2002), pp. 56–59.

  31. R. Hagege, TUT, No. 3, 44–46 (1994).

  32. M. Suzuki, Carbon, 32, 577–586 (1994).

    Article  CAS  Google Scholar 

  33. Active Carbons, AOOT “EKhMZ” NPO Neorganika Catalog [in Russian], NIITEKhim, Cherkassy (1996).

  34. I. Mochida, Y Korai, et al., Carbon, 38.2, 227–240 (2000).

    Article  Google Scholar 

  35. L. I. Fridman, V. M. Chaiko, et al., Khim. Volokna, No. 6, 22–23 (1979).

  36. V. L. Sigal, Zh. Prikl. Khim., 65, No. 7, 1668–1670 (1997).

    Google Scholar 

  37. L. I. Fridman, Doctoral Dissertation, Leningrad Khimvolokno Scientific-Research Institute, Leningrad (1998).

    Google Scholar 

  38. V. Ya. Varshavskii, Carbon Fibres [in Russian], Varshavskii, Moscow (2005).

    Google Scholar 

  39. P. Scharff, Carbon, 36, 481–486 (1998).

    Article  CAS  Google Scholar 

  40. I. B. Vostrinov, V. P. Kuznetsov, et al., in: Proceedings of the IV International Conference “ Carbon” [in Russian], Moscow (2005), p. 25.

  41. Yu. S. Nechaev, Altern. Energet, No. 2, 64–73 (2005).

  42. A. Bregge, TUT, 2, No. 40, 11–13 (2001).

    Google Scholar 

  43. M. P. Pakhamov, E. V. Nazarova, et al., Zh. Prikl. Khim., 76, No. 3, 479–482 (2003).

    Google Scholar 

  44. A. V. Kamareich, Filter Materials Manufactured by Aerodynamic Spinning [in Russian], Nauka/Tekhnika (1999).

  45. Z. Yue, C. L. Mangun, and J. Economy, Carbon, 40, No. 8, 1181–1191 (2002).

    Article  CAS  Google Scholar 

  46. K. Miura, H. Nakogawa, and H. Okomoto, Carbon, 38, 119–125 (2000).

    Article  CAS  Google Scholar 

  47. K. S. Ko, C. V. Park, et al., Carbon, 39, No. 7, 1031–1033 (1997).

    Google Scholar 

  48. J. Ozaki, N. Endo, et al., Carbon, 35, No. 7, 1031–1033 (1997).

    Article  CAS  Google Scholar 

  49. N. Patel, K. Okabe, and A. Oya, Carbon, 40, 315–320 (2002).

    Article  CAS  Google Scholar 

  50. A. Lysenko and D. Galunov, in: Book of Abstracts, 8th Intern. Conf. Fundam. Adsorp., Sedona, Arizona (2004), p. 234.

  51. M. Toyoda, A. Shimizy, et al., Carbon, 39, 1697–1707 (2001).

    Article  CAS  Google Scholar 

  52. M. Toyoda, Y. Tany, and Y. Soneda, Carbon, 42, 2833–2837 (2004).

    Article  CAS  Google Scholar 

  53. E. G. Rakov, Usp. Khim., No. 70, 934–940 (2001).

  54. J. Alcaniz-Monge and A. Linares-Soland, Carbon, 33, 1085–1090 (1995).

    Article  Google Scholar 

  55. F. Suares-Garcia, A. Martinez, et al., Fuel Proc. Technol, No. 77–78, 237–241 (2002).

  56. Z. Ryu, J. Zheng, et al., Fuel Proc. Technol, No. 77–78, 237–241 (2002).

  57. A. Martinez-Alonzo, M. Jamond, et al., Micropor. Mater, No. 11, 303–311 (1997).

  58. I. A. Piskunova, Candidate Dissertation, St. Petersburg State University of Technology and Design, St. Petersburg (2003).

    Google Scholar 

  59. T. D. Druzhinina, E. Yu. Savel’ev, and I. M. Kharchenko, Khim. Tverd. Topl, No. 43, 46–56 (2004).

  60. O. Yu. Mukhina, Candidate Dissertation, St. Petersburg State University of Technology and Design, St. Petersburg (2003).

    Google Scholar 

  61. S. Y. You and S. H. Park, Carbon, 38, 1453–1460 (2000).

    Article  CAS  Google Scholar 

  62. A. Cuesta, A. Martinez-Alonso, et al., Carbon, 35, 967–976 (1997).

    Article  CAS  Google Scholar 

  63. A. V. Tarasov (ed.), Active Carbons in Russia [in Russian], Metallurgiya, Moscow (2004).

    Google Scholar 

  64. P. J. Carrot, Carbon, 39, 1543–1555 (2001).

    Article  Google Scholar 

  65. Y Shimamura (ed.), Carbon Fibres [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  66. RF Patent No. 2213820 (2003).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimicheskie Volokna, No. 2, pp. 4–11, March–April, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysenko, A.A. Prospects for development of research and production of carbon fibre sorbents. Fibre Chem 39, 93–102 (2007). https://doi.org/10.1007/s10692-007-0023-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-007-0023-x

Keywords

Navigation