Appendix
Proof of Theorem 1
We derive the optimal execution volume \({\varvec{q}}_{t}^{*}\) at time \(t \in \{ { 1, \ldots , T } \}\) by backward induction method of dynamic programming from the maturity T via the following three steps.
- Step 1:
-
From the assumption that the large trader must unwind all the remainder of his/her position at time \(t = T\),
$$\begin{aligned} {\overline{\varvec{Q}}}_{T + 1} = {\overline{\varvec{Q}}}_{T} - {\varvec{q}}_{T} = {\varvec{0}}, \end{aligned}$$
(A.1)
must hold, which yields \({\overline{\varvec{Q}}}_{T} = {\varvec{q}}_{T}\). Then, for \(t = T\),
$$\begin{aligned} V_{T} \big [ {\varvec{s}}_{T} \big ]&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ V_{T + 1} \big [ {\varvec{s}}_{T + 1} \big ] \Big \vert {\varvec{s}}_{T} \Big ] \nonumber \\&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ V_{T + 1} \big [ W_{T + 1}, {\varvec{P}}_{T + 1}, {\overline{\varvec{Q}}}_{T + 1}, {\varvec{R}}_{T + 1}, {\varvec{v}}_{T} \big ] \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ] \nonumber \\&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ - \exp \left\{ - \gamma W_{T + 1} \right\} \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ] \nonumber \\&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ - \exp \left\{ - \gamma \big [ W_{T} - \left[ {\varvec{P}}_{T} + \left( \pmb {\varLambda }_{T} {\varvec{q}}_{T} + \pmb {\kappa }_{T} {\varvec{v}}_{T} \right) \right] ^{\top } {\varvec{q}}_{T} \big ] \right\} \nonumber \\&\qquad \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ] \nonumber \\&= - \exp \left\{ - \gamma \big [ W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} - {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\varLambda }_{T} {\overline{\varvec{Q}}}_{T} \big ] \right\} \nonumber \\&\quad \times {\mathbb {E}} \Big [ \exp \left\{ \gamma {\varvec{v}}_{T}^{\top } \pmb {\kappa }_{T}^{\top } {\overline{\varvec{Q}}}_{T} \right\} \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ]. \end{aligned}$$
(A.2)
Using the fact that \({\varvec{v}}_{T}^{\top } \pmb {\kappa }_{T}^{\top } {\overline{\varvec{Q}}}_{T} = {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} {\varvec{v}}_{T} (\in {\mathbb {R}})\) and the moment–generating function with respect to \({\varvec{v}}_{T}\), we have
$$\begin{aligned}&{\mathbb {E}} \Big [ \exp \left\{ \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} {\varvec{v}}_{T} \right\} \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ] \nonumber \\&\quad = \exp \left\{ \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \left( {\varvec{a}}_{T}^{{\varvec{v}}} + \mathbf{b}_{T}^{{\varvec{v}}} {\varvec{v}}_{T - 1} \right) + \frac{1}{2} \left( \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \right) \pmb {\varSigma }_{T}^{{\varvec{v}}} \left( \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \right) ^{\top } \right\} . \end{aligned}$$
(A.3)
Thus, Eq. (A.2) becomes
$$\begin{aligned} V_{T} \big [ {\varvec{s}}_{T} \big ]&= - \exp \left\{ - \gamma \Big [ W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} - {\overline{\varvec{Q}}}_{T}^{T} \pmb {\varLambda }_{T} {\overline{\varvec{Q}}}_{T} \Big ] \right\} \nonumber \\&\quad \times \exp \left\{ \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \left( {\varvec{a}}_{T}^{{\varvec{v}}} + \mathbf{b}_{T}^{{\varvec{v}}} {\varvec{v}}_{T - 1} \right) + \frac{1}{2} \left( \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \right) \pmb {\varSigma }_{T}^{{\varvec{v}}} \left( \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \right) ^{\top } \right\} \nonumber \\&= - \exp \Big \{ - \gamma \Big [ W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{G}_{T} {\overline{\varvec{Q}}}_{T} + {\varvec{H}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{M}_{T} {\varvec{v}}_{T - 1} \Big ] \Big \}, \end{aligned}$$
(A.4)
where we have used the fact that \({\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} {\varvec{a}}_{T}^{{\varvec{v}}} = \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T}^{\top } {\overline{\varvec{Q}}}_{T}\) and
$$\begin{aligned} \mathbf{G}_{T}&:= - \pmb {\varLambda }_{T} - \frac{1}{2} \gamma \pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T}^{\top } (\in {\mathbb {R}}^{2 \times 2}); \nonumber \\ {\varvec{H}}_{T}^{\top }&:= - \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} (\in {\mathbb {R}}^{1 \times 2}); \nonumber \\ \mathbf{M}_{T}&:= - \pmb {\kappa }_{T} \mathbf{b}_{T}^{{\varvec{v}}} (\in {\mathbb {R}}^{2 \times 2}). \end{aligned}$$
(A.5)
Note that \(\mathbf{G}_{T}\) is negative definite (by Assumptions 1 and 2).
- Step 2:
-
For \(t = T - 1\), we have
$$\begin{aligned}&V_{T - 1} \big [ {\varvec{s}}_{T - 1} \big ] \nonumber \\&\quad = \sup _{{\varvec{q}}_{T - 1} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ V_{T} \big [ {\varvec{s}}_{T} \big ] \Big \vert {\varvec{s}}_{T - 1} \Big ] \nonumber \\&\quad = \sup _{{\varvec{q}}_{T - 1} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ - \exp \Big \{ - \gamma \Big [ W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{G}_{T} {\overline{\varvec{Q}}}_{T} + {\varvec{H}}_{T}^{\top } {\overline{\varvec{Q}}}_{T}\nonumber \\&\qquad + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{M}_{T} {\varvec{v}}_{T - 1} \Big ] \Big \} \Big \vert {\varvec{s}}_{T - 1} \Big ] \nonumber \\&\quad = \sup _{{\varvec{q}}_{T - 1} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ -\exp \Big \{ - \gamma \Big [ W_{T - 1} - \big \{ {\varvec{P}}_{T - 1} + \big ( \pmb {\varLambda }_{T - 1} {\varvec{q}}_{T - 1} + \pmb {\kappa }_{T - 1} {\varvec{v}}_{T - 1} \big ) \big \}^{\top } {\varvec{q}}_{T - 1} \nonumber \\&\qquad - \big \{ {\varvec{P}}_{T - 1} - ( 1 - \mathrm {e}^{- \rho } ) {\varvec{R}}_{T - 1} + \left( \mathrm {e}^{- \rho } \mathbf{A}_{T - 1} + \mathbf{B}_{T - 1} \right) \left( \pmb {\varLambda }_{T - 1} {\varvec{q}}_{T - 1} + \pmb {\kappa }_{T - 1} {\varvec{v}}_{T - 1} \right) \nonumber \\&\qquad + \pmb {\varepsilon }_{T - 1} \big \}^{\top } \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \nonumber \\&\qquad + \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) ^{\top } \mathbf{G}_{T} \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) + {\varvec{H}}_{T}^{\top } \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \nonumber \\&\qquad + \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) ^{\top } \mathbf{M}_{T} {\varvec{v}}_{T - 1} \Big ] \Big \} \Big \vert {\varvec{s}}_{T - 1} \Big ] \nonumber \\&\quad = \sup _{{\varvec{q}}_{T - 1} \in {\mathbb {R}}^{2}} \Bigg [ - \exp \Big \{ - \gamma \Big [ {\varvec{q}}_{T - 1}^{\top } \left\{ \pmb {\varLambda }_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \right\} - \mathbf{G}_{T} \right\} {\varvec{q}}_{T - 1}\nonumber \\&\qquad + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left\{ \pmb {\varLambda }_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \right\} - 2 \mathbf{G}_{T} \right\} {\varvec{q}}_{T - 1} \nonumber \\&\quad - ( 1 - \mathrm {e}^{-\rho } ) {\varvec{R}}_{T - 1}^{\top } {\varvec{q}}_{T - 1} - {\varvec{H}}_{T - 1}^{\top } {\varvec{q}}_{T - 1} \nonumber \\&\qquad + W_{T - 1} - {\varvec{P}}_{T - 1} {\overline{\varvec{Q}}}_{T - 1} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \mathbf{G}_{T} {\overline{\varvec{Q}}}_{T - 1} + {\varvec{H}}_{T - 1}^{\top } {\overline{\varvec{Q}}}_{T - 1} + ( 1 - \mathrm {e}^{-\rho } ) {\overline{\varvec{Q}}}_{T - 1}^{\top } {\varvec{R}}_{T - 1} \Big ] \Big \} \nonumber \\&\qquad \times {\mathbb {E}} \left[ \exp \Big \{ \gamma \left[ {\varvec{q}}_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T - 1} \right\} \nonumber \right. \right. \\&\left. \left. \qquad + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left( \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right) \right] {\varvec{v}}_{T - 1} \Big \} \Big \vert {\varvec{s}}_{T - 1} \right] \nonumber \\&\qquad \times {\mathbb {E}} \left[ \exp \Big \{ \gamma \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \pmb {\varepsilon }_{T - 1} \Big \} \Big \vert {\varvec{s}}_{T - 1} \right] \Bigg ], \end{aligned}$$
(A.6)
where \(\pmb {\varPi }_{T - 1} := \mathrm {e}^{-\rho } \mathbf{A}_{T - 1} + \mathbf{B}_{T - 1}\). Using the moment generating function, we obtain
-
1.
First expectation in Eq. (A.6):
$$\begin{aligned}&{\mathbb {E}} \left[ \exp \Big \{ \gamma \left[ {\varvec{q}}_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T - 1} \right\} \nonumber \right. \right. \\&\left. \left. \qquad + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left( \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right) \right] {\varvec{v}}_{T - 1} \Big \} \Big \vert {\varvec{s}}_{T - 1} \right] \nonumber \\&\quad = \exp \Big \{ \gamma \left[ {\varvec{q}}_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1}\nonumber \right. \right. \\&\left. \left. \qquad + \mathbf{M}_{T - 1} \right\} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left( \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right) \right] \left( {\varvec{a}}_{T - 1}^{{\varvec{v}}} + \mathbf{b}_{T - 1}^{{\varvec{v}}} {\varvec{v}}_{T - 2} \right) \nonumber \\&\qquad + \frac{1}{2} \gamma ^{2} \left[ {\varvec{q}}_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T - 1} \right\} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left( \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right) \right] \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \nonumber \\&\qquad \left[ {\varvec{q}}_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T - 1} \right\} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left( \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right) \right] ^{\top } \Big \}; \end{aligned}$$
(A.7)
-
2.
Second expectation in Eq. (A.6):
$$\begin{aligned}&{\mathbb {E}} \left[ \exp \Big \{ \gamma \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \pmb {\varepsilon }_{T - 1} \Big \} \Big \vert {\varvec{s}}_{T - 1} \right] \nonumber \\&\quad = \exp \Big \{ \gamma \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \pmb {\mu }_{T - 1}^{\pmb {\varepsilon }}\nonumber \\&\qquad + \frac{1}{2} \gamma ^{2} \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) ^{\top } \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \Big \}. \end{aligned}$$
(A.8)
Therefore, by substituting Eq. (A.7) and (A.8) into Eq. (A.6) and rearranging the terms, we have
$$\begin{aligned}&V_{T - 1} \big [ {\varvec{s}}_{T - 1} \big ] \nonumber \\&\quad = \sup _{{\varvec{q}}_{T - 1} \in {\mathbb {R}}^{2}} - \exp \Big \{ - \gamma \Big [ - {\varvec{q}}_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1} {\varvec{q}}_{T - 1}\nonumber \\&\qquad + \left( {\overline{\varvec{Q}}}_{T - 1}^{\top } \pmb {\varTheta }_{T - 1} + {\varvec{R}}_{T - 1}^{\top } \pmb {\varXi }_{T - 1} + {\varvec{v}}_{T - 2}^{\top } \pmb {\varPhi }_{T - 1} + \pmb {\varPsi }_{T - 1}^{\top } \right) {\varvec{q}}_{T - 1} \nonumber \\&\qquad + W_{T - 1} - {\varvec{P}}_{T - 1}^{\top } {\overline{\varvec{Q}}}_{T - 1}\nonumber \\&\qquad + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left\{ \mathbf{G}_{T}\nonumber \right. \\&\left. \qquad - \frac{1}{2} \gamma \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top } - \frac{1}{2} \gamma \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} \right\} {\overline{\varvec{Q}}}_{T - 1} \nonumber \\&\qquad + \left\{ {\varvec{H}}_{T}^{\top } - \left( {\varvec{a}}_{T - 1}^{\mathbf{v}} \right) ^{\top } \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top }\nonumber \right. \\&\left. \qquad - \left( \pmb {\mu }_{T - 1}^{\pmb {\varepsilon }} \right) ^{\top } \right\} {\overline{\varvec{Q}}}_{T - 1} + ( 1 - \mathrm {e}^{- \rho } ) {\overline{\varvec{Q}}}_{T - 1}^{\top } {\varvec{R}}_{T - 1} \nonumber \\&\qquad - {\overline{\varvec{Q}}}_{T - 1}^{\top } \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \mathbf{b}_{T - 1}^{{\varvec{v}}} {\varvec{v}}_{T - 2} \Big ] \Big \}, \end{aligned}$$
(A.9)
with the following relations:
$$\begin{aligned} \pmb {\tilde{\varOmega }}_{T - 1}&:= \frac{1}{2} \left( \pmb {\varOmega }_{T - 1} + \pmb {\varOmega }_{T - 1}^{\top } \right) \nonumber \\&= \frac{1}{2} \pmb {\varLambda }_{T - 1} \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \right\} + \frac{1}{2} \left\{ \pmb {\varLambda }_{T - 1} \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \right\} \right\} ^{\top } - \mathbf{G}_{T} \nonumber \\&\quad + \frac{1}{2} \gamma \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T} \right\} \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T} \right\} ^{\top }\nonumber \\&\quad + \frac{1}{2} \gamma \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varTheta }_{T - 1}&:= - \pmb {\varPi }_{T - 1} \pmb {\varLambda }_{T - 1} - 2 \mathbf{G}_{T}\nonumber \\&\quad - \gamma \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T} \right\} ^{\top } \nonumber \\&\quad + \gamma \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varXi }_{T - 1}&:= - ( 1 - \mathrm {e}^{-\rho } ) \mathbf{I}_{2} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPhi }_{T - 1}&:= - \left( \mathbf{b}_{T - 1}^{{\varvec{v}}} \right) ^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T} \right\} ^{\top } \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPsi }_{T - 1}^{\top }&:= - {\varvec{H}}_{T}^{\top } - \left( {\varvec{a}}_{T - 1}^{{\varvec{v}}} \right) ^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T} \right\} ^{\top } + \left( \pmb {\mu }_{T - 1}^{\pmb {\varepsilon }} \right) ^{\top } \ ( \in {\mathbb {R}}^{1 \times 2} ). \end{aligned}$$
(A.10)
By the assumption 2.1, \(\pmb {\tilde{\varOmega }}_{T - 1}\) becomes a (symmetric and) positive definite matrix. Finding the optimal execution volume \({\varvec{q}}_{T - 1}^{*}\) which attains the supremum of Eq. (A.6) is equivalent to finding the one which yields the maximum of the following function \(K_{T - 1} ( {\varvec{q}}_{T - 1} )\) defined as
$$\begin{aligned}&K_{T - 1} ( {\varvec{q}}_{T - 1} ) := - {\varvec{q}}_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1} {\varvec{q}}_{T - 1}\nonumber \\&\quad + \left( {\overline{\varvec{Q}}}_{T - 1}^{\top } \pmb {\varTheta }_{T - 1} + {\varvec{R}}_{T - 1}^{\top } \pmb {\varXi }_{T - 1} + {\varvec{v}}_{T - 2}^{\top } \pmb {\varPhi }_{T - 1} + \pmb {\varPsi }_{T - 1}^{\top } \right) {\varvec{q}}_{T - 1} \nonumber \\&\quad + W_{T - 1} - {\varvec{P}}_{T - 1} {\overline{\varvec{Q}}}_{T - 1} + {\overline{\varvec{Q}}}_{T - 1} \left\{ \mathbf{G}_{T}\nonumber \right. \\&\left. \quad - \frac{1}{2} \gamma \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top }\nonumber \right. \\&\left. \quad - \frac{1}{2} \gamma \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} \right\} {\overline{\varvec{Q}}}_{T - 1} \nonumber \\&\quad + \left\{ {\varvec{H}}_{T}^{\top } - \left( {\varvec{a}}_{T - 1}^{{\varvec{v}}} \right) ^{\top } \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top } - \left( \pmb {\mu }_{T - 1}^{\pmb {\varepsilon }} \right) ^{\top } \right\} {\overline{\varvec{Q}}}_{T - 1} + ( 1 - \mathrm {e}^{- \rho } ) {\overline{\varvec{Q}}}_{T - 1} {\varvec{R}}_{T - 1} \nonumber \\&\quad + {\overline{\varvec{Q}}}_{T - 1} \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \mathbf{b}_{T - 1}^{{\varvec{v}}} {\varvec{v}}_{T - 2}, \end{aligned}$$
(A.11)
since both Eq. (A.6) and Eq. (A.11) are concave functions with respect to \({\varvec{q}}_{T - 1}\). Thus, by completing the square of \(K_{T - 1}\), we obtain the optimal execution volume \(\mathbf{q}_{T - 1}^{*}\) as
$$\begin{aligned} {\varvec{q}}_{T - 1}^{*}&= \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \left\{ \pmb {\varTheta }_{T - 1}^{\top } {\overline{\varvec{Q}}}_{T - 1} + \pmb {\varXi }_{T - 1}^{\top } {\varvec{R}}_{T - 1} + \pmb {\varPhi }_{T - 1}^{\top } {\varvec{v}}_{T - 2} + \pmb {\varPsi }_{T - 1} \right\} \nonumber \\&\left( =: {\varvec{a}}_{T - 1} + \mathbf{b}_{T - 1} {\overline{\varvec{Q}}}_{T - 1} + \mathbf{c}_{T - 1} {\varvec{R}}_{T - 1} + \mathbf{d}_{T - 1} {\varvec{v}}_{T - 2} \right) . \end{aligned}$$
(A.12)
Thus, the optimal value function at time \(T - 1\) becomes a functional form as follows:
$$\begin{aligned}&V_{T - 1} \big [ {\varvec{s}}_{T - 1} \big ] \nonumber \\&\quad = - \exp \Big \{ - \gamma \Big [ W_{T - 1} - {\varvec{P}}_{T - 1}^{\top } {\overline{\varvec{Q}}}_{T - 1} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \mathbf{G}_{T - 1} {\overline{\varvec{Q}}}_{T - 1}\nonumber \\&\qquad + {\varvec{H}}_{T - 1}^{\top } {\overline{\varvec{Q}}}_{T - 1} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \mathbf{I}_{T - 1} {\varvec{R}}_{T - 1} + {\varvec{R}}_{T - 1}^{\top } \mathbf{J}_{T - 1} {\varvec{R}}_{T - 1} \nonumber \\&\qquad + {\varvec{L}}_{T - 1}^{\top } {\varvec{R}}_{T - 1} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \mathbf{M}_{T - 1} {\varvec{v}}_{T - 2} + {\varvec{R}}_{T - 1}^{\top } \mathbf{N}_{T - 1} {\varvec{v}}_{T - 2}\nonumber \\&\qquad + {\varvec{v}}_{T - 2}^{\top } \mathbf{X}_{T - 1} {\varvec{v}}_{T - 2} + {\varvec{Y}}_{T - 1}^{\top } {\varvec{v}}_{T - 2} + Z_{T - 1} \Big ] \Big \}, \end{aligned}$$
(A.13)
where
$$\begin{aligned} \mathbf{G}_{T - 1}&:= \mathbf{G}_{T} - \frac{1}{2} \gamma \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top }\nonumber \\&\quad - \frac{1}{2} \gamma \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} + \frac{1}{4} \pmb {\varTheta }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varTheta }_{T - 1}^{\top }; \nonumber \\ {\varvec{H}}_{T - 1}^{\top }&:= {\varvec{H}}_{T}^{\top } - \left( {\varvec{a}}_{T - 1}^{{\varvec{v}}} \right) ^{\top } \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top } - \left( \pmb {\mu }_{T - 1}^{\pmb {\varepsilon }} \right) ^{\top } + \frac{1}{2} \pmb {\varPsi }_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varTheta }_{T -
1}^{\top }; \nonumber \\ \mathbf{I}_{T - 1}&:= ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} + \frac{1}{2} \pmb {\varTheta }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varXi }_{T - 1}^{\top }; \quad \mathbf{J}_{T - 1}\nonumber \\&:= \frac{1}{4} \pmb {\varXi }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varXi }_{T - 1}^{\top }; \quad {\varvec{L}}_{T - 1}^{\top } := \frac{1}{2} \pmb {\varPsi }_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varXi }_{T - 1}^{\top }; \nonumber \\ \mathbf{M}_{T - 1}&:= \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \mathbf{b}_{T - 1}^{{\varvec{v}}} + \frac{1}{2} \pmb {\varTheta }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varPhi }_{T - 1}^{\top }; \quad \mathbf{N}_{T - 1}\nonumber \\&:= \frac{1}{2} \pmb {\varXi }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varPhi }_{T - 1}^{\top }; \nonumber \\ \mathbf{X}_{T - 1}&:= \frac{1}{4} \pmb {\varPhi }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varPhi }_{T - 1}^{\top }; \quad {\varvec{Y}}_{T - 1}^{\top } := \frac{1}{2} \pmb {\varPsi }_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varPhi }_{T - 1}^{\top }; \quad \nonumber \\ Z_{T - 1}&:= \frac{1}{4} \pmb {\varPsi }_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varPsi }_{T - 1}. \end{aligned}$$
(A.14)
- Step 3:
-
For \(t \in \{ { T - 2, \ldots , 2 } \}\), we can assume from the above results that, at time \(t + 1\), the optimal value function has the following functional form:
$$\begin{aligned}&V_{t + 1} \big [ {\varvec{s}}_{t + 1} \big ] \nonumber \\&\quad = - \exp \Big \{ - \gamma \Big [ W_{t + 1} - {\varvec{P}}_{t + 1}^{\top } {\overline{\varvec{Q}}}_{t + 1} + {\overline{\varvec{Q}}}_{t + 1}^{\top } \mathbf{G}_{t + 1} {\overline{\varvec{Q}}}_{t + 1} + {\varvec{H}}_{t + 1}^{\top } {\overline{\varvec{Q}}}_{t + 1}\nonumber \\&\qquad + {\overline{\varvec{Q}}}_{t + 1}^{\top } \mathbf{I}_{t + 1} {\varvec{R}}_{t + 1} + {\varvec{R}}_{t + 1}^{\top } \mathbf{J}_{t + 1} {\varvec{R}}_{t + 1} \nonumber \\&\qquad + {\varvec{L}}_{t + 1}^{\top } {\varvec{R}}_{t + 1} + {\overline{\varvec{Q}}}_{t + 1}^{\top } \mathbf{M}_{t + 1} {\varvec{v}}_{t} + {\varvec{R}}_{t + 1}^{\top } \mathbf{N}_{t + 1} {\varvec{v}}_{t} + {\varvec{v}}_{t}^{\top } \mathbf{X}_{t + 1} {\varvec{v}}_{t} + {\varvec{Y}}_{t + 1}^{\top } {\varvec{v}}_{t} + Z_{t + 1} \Big ] \Big \}. \end{aligned}$$
(A.15)
Then, we can obtain the following calculation by substituting the dynamics of \(W_{t + 1}, {\varvec{P}}_{t + 1}, {\overline{\varvec{Q}}}_{t + 1}, {\varvec{R}}_{ t + 1}, {\varvec{v}}_{t}\) into the equation above:
$$\begin{aligned} V_{t} \big [ {\varvec{s}}_{t} \big ]&= \sup _{{\varvec{q}}_{t} \in {\mathbb {R}}^{2}} - \exp \Big \{ - \gamma \Big [ {\varvec{q}}_{t}^{\top } \left( - \pmb {\varLambda }_{t} + \pmb {\varPi }_{t} \pmb {\varLambda }_{t} + \mathbf{G}_{t + 1}\nonumber \right. \\&\left. \quad - \mathrm {e}^{- \rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} + \mathrm {e}^{- 2 \rho } \pmb {\varLambda }_{t}^{\top } \mathbf{A}_{t}^{\top } \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} \right) {\varvec{q}}_{t} \nonumber \\&\quad + \Big [ {\overline{\varvec{Q}}}_{t}^{\top } \left( - \pmb {\varPi }_{t} \pmb {\varLambda }_{t} - 2 \mathbf{G}_{t + 1} + \mathrm {e}^{- \rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} \right) \nonumber \\&\quad + {\varvec{R}}_{t}^{\top } \left( - ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} - \mathrm {e}^{- \rho } \mathbf{I}_{t + 1} + 2 \mathrm {e}^{- 2 \rho } \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} \right) \nonumber \\&\quad + \left( - {\varvec{H}}_{t + 1}^{\top } + \mathrm {e}^{- \rho } {\varvec{L}}_{t + 1}^{\top } \mathbf{A}_{t} \pmb {\varLambda }_{t} \right) \Big ] {\varvec{q}}_{t} + W_{t} - {\varvec{P}}_{t}^{\top } {\overline{\varvec{Q}}}_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \mathbf{G}_{t + 1} {\overline{\varvec{Q}}}_{t} + {\varvec{H}}_{t + 1}^{\top } {\overline{\varvec{Q}}}_{t} \nonumber \\&\quad + {\overline{\varvec{Q}}}_{t}^{\top } \left( ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} + \mathrm {e}^{- \rho } \mathbf{I}_{t} \right) {\varvec{R}}_{t} + \mathrm {e}^{- 2 \rho } {\varvec{R}}_{t}^{\top } \mathbf{J}_{t + 1} {\varvec{R}}_{t} + \mathrm {e}^{- \rho } {\varvec{L}}_{t + 1}^{\top } {\varvec{R}}_{t} + Z_{t + 1} \Big ] \Big \} \nonumber \\&\quad \times {\mathbb {E}} \left[ \exp \Big \{ - \gamma \left[ {\varvec{v}}_{t}^{\top } \pmb {\xi }_{t} {\varvec{v}}_{t} + \left( {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t} \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right) {\varvec{v}}_{t} \right] \Big \} \Big \vert {\varvec{s}}_{t} \right] \nonumber \\&\quad \times {\mathbb {E}} \left[ \exp \Big \{ \gamma \left( {\overline{\varvec{Q}}}_{t} - {\varvec{q}}_{t} \right) ^{\top } \pmb {\varepsilon }_{t} \Big \} \Big \vert {\varvec{s}}_{t} \right] , \end{aligned}$$
(A.16)
where \(\pmb {\varPi }_{t} := \mathrm {e}^{-\rho } \mathbf{A}_{t} + \mathbf{B}_{t}\) and
$$\begin{aligned} \pmb {\xi }_{t}&:= \mathrm {e}^{-2\rho } \pmb {\kappa }_{t}^{\top } \mathbf{A}_{t} \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\kappa }_{t} + \mathrm {e}^{-\rho } \pmb {\kappa }_{t} \mathbf{A}_{t} \mathbf{N}_{t + 1} + \mathbf{X}_{t + 1} \ (\in {\mathbb {R}}^{2 \times 2}); \\ \pmb {\delta }_{t}&:= - \left( \mathbf{I}_{2} - \pmb {\varPi }_{t} \right) \pmb {\kappa }_{t} - \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\kappa }_{t}\nonumber \\&\quad + 2 \mathrm {e}^{-2\rho } \pmb {\varLambda }_{t} \mathbf{A}_{t} \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\kappa }_{t} - \mathbf{M}_{t + 1} + \mathrm {e}^{-\rho } \pmb {\varLambda }_{t} \mathbf{A}_{t} \mathbf{N}_{t + 1} \ (\in {\mathbb {R}}^{2 \times 2}); \\ \pmb {\eta }_{t}&:= - \pmb {\varPi }_{t} \pmb {\kappa }_{t} + \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\kappa }_{t} + \mathbf{M}_{t + 1} \ (\in {\mathbb {R}}^{2 \times 2}); \\ \pmb {\theta }_{t}&:= 2 \mathrm {e}^{-2\rho } \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\kappa }_{t} + \mathrm {e}^{-\rho } \mathbf{N}_{t + 1} \ (\in {\mathbb {R}}^{2 \times 2}); \\ \pmb {\phi }_{t}^{\top }&:= \mathrm {e}^{-\rho } {\varvec{L}}_{t + 1}^{\top } \mathbf{A}_{t} \pmb {\kappa }_{t} + {\varvec{Y}}_{t + 1}^{\top } \ (\in {\mathbb {R}}^{1 \times 2}). \end{aligned}$$
The direct calculation leads to the following equations:
-
1.
First expectation in Eq. (A.16):
$$\begin{aligned}&{\mathbb {E}} \left[ \exp \Big \{ - \gamma \left[ {\varvec{v}}_{t}^{\top } \pmb {\xi }_{t} {\varvec{v}}_{t} + \left( {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t} \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right) {\varvec{v}}_{t} \right] \Big \} \Big \vert {\varvec{s}}_{t} \right] \nonumber \\&\quad = \frac{\left|\left( \pmb {\varSigma }_{t}^{*} \right) \right|}{\left|\pmb {\varSigma }_{t}^{{\varvec{v}}} \right|} \exp \Big \{ \frac{1}{2} \Big [ \left( {\varvec{a}}_{t}^{{\varvec{v}}} + \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1} \right) ^{\top } \left\{ \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1}\nonumber \right. \\&\left. \qquad - \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \right\} \left( {\varvec{a}}_{t}^{{\varvec{v}}} + \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1} \right) \nonumber \\&\quad - 2 \gamma \left[ {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right] \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} ( \pmb {\varSigma }_{t}^{{\varvec{v}}} )^{-1} \left( {\varvec{a}}_{t}^{{\varvec{v}}} + \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1} \right) \nonumber \\&\quad + \gamma ^{2} \left[ {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right] \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \left[ {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right] ^{\top } \Big ] \Big \}; \end{aligned}$$
(A.17)
-
2.
Second expectation in Eq. (A.16):
$$\begin{aligned}&{\mathbb {E}} \left[ \exp \Big \{ \gamma \left( \mathbf{{\overline{Q}}}_{t} - \mathbf{q}_{t} \right) \pmb {\varepsilon }_{t} \Big \} \Big \vert s_{t} \right] \nonumber \\&\quad = \exp \Big \{ \gamma \left( {\overline{\varvec{Q}}}_{t} - {\varvec{q}}_{t} \right) \pmb {\mu }_{t}^{\pmb {\varepsilon }} + \frac{1}{2} \gamma ^{2} \left( {\overline{\varvec{Q}}}_{t} - {\varvec{q}}_{t} \right) ^{\top } \pmb {\varSigma }_{t}^{\pmb {\varepsilon }} \left( {\overline{\varvec{Q}}}_{t} - {\varvec{q}}_{t} \right) \Big \}. \end{aligned}$$
(A.18)
To derive Eq. (A.17), the following lemma has been used. Although this lemma is a straightforward result, we here note the result as a lemma for this paper to be self–contained.
Lemma 1
For an n–dimensional normally distributed random variable \({\varvec{X}}\) with mean \(\pmb {\mu } \in {\mathbb {R}}^{n}\) and variance \(\pmb {\varSigma } \in {\mathbb {R}}^{n \times n}\) (where \(\pmb {\varSigma }\) is a symmetric positive definite matrix), we have
$$\begin{aligned}&{\mathbb {E}} \Big [ \exp \Big \{ {\varvec{s}}^{\top } {\varvec{X}} + {\varvec{X}}^{\top } \mathbf{V} {\varvec{X}} \Big \} \Big ]\nonumber \\&\quad = \frac{|\left( \pmb {\varSigma }^{*} \right) ^{-1} |^{\frac{1}{2}}}{|\pmb {\varSigma } |^{\frac{1}{2}}} \exp \left\{ \frac{1}{2} \left[ \left( \pmb {\mu }^{*} \right) ^{\top } \pmb {\varSigma }^{-1} \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu }^{*} - \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} , \end{aligned}$$
(A.19)
where \({\varvec{s}} \in {\mathbb {R}}^{n}\), \(\mathbf{V} \in {\mathbb {R}}^{n \times n}\), \(\pmb {\mu }^{*} := \pmb {\mu } + \pmb {\varSigma } {\varvec{s}}\) and \(\pmb {\varSigma }^{*} := \pmb {\varSigma }^{-1} - 2 \mathbf{V}\), under the assumption that \(\pmb {\varSigma }^{*}\) is a non–singular matrix. Remind that when \(\mathbf{V} = \mathbf{0}\), the result is consistent with the one obtained from the moment generating function.
Proof
We can assume, without loss of generality, that \(\mathbf{V}\) is symmetric, since \({\varvec{X}}^{\top } \mathbf{V} {\varvec{X}} \in {\mathbb {R}}\) we have a symmetric matrix \({\tilde{\mathbf {V}}} (:= \frac{\mathbf{V} + \mathbf{V}^{\top }}{2})\) which satisfies \({\varvec{X}}^{\top } \mathbf{\tilde{V}} {\varvec{X}} = {\varvec{X}}^{\top } \mathbf{V} {\varvec{X}}\) even if \(\mathbf{V}\) is not symmetric. Define \({\varvec{x}} := ( x_{1}, \ldots , x_{n} )^{\top } \in {\mathbb {R}}^{n}\). Then, direct calculation yields
$$\begin{aligned}&{\mathbb {E}} \Big [ \exp \Big \{ {\varvec{s}}^{\top } {\varvec{X}} + {\varvec{X}}^{\top } \mathbf{V} {\varvec{X}} \Big \} \Big ] \nonumber \\&\quad = \frac{1}{\left( 2 \pi \right) ^{\frac{n}{2}} |\pmb {\varSigma } |^{\frac{1}{2}}} \int _{{\mathbb {R}}^{n}}^{} \exp \left\{ - \frac{1}{2} \left[ {\varvec{x}}^{\top } \left( \pmb {\varSigma }^{-1} - 2 \mathbf{V} \right) {\varvec{x}}\nonumber \right. \right. \\&\left. \left. \qquad - 2 \left( \pmb {\mu } + \pmb {\varSigma } {\varvec{s}} \right) ^{\top } \pmb {\varSigma }^{-1} {\varvec{x}} + \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} \mathrm {d}{\varvec{x}}, \end{aligned}$$
(A.20)
where \(\mathrm {d}{\varvec{x}} := \mathrm {d}x_{1} \cdots \mathrm {d}x_{n}\). If we set \(\pmb {\varSigma }^{*} := \pmb {\varSigma }^{-1} - 2 \mathbf{V}\) and \(\pmb {\mu }^{*} := \pmb {\mu } + \pmb {\varSigma } {\varvec{s}}\), then by the assumption that \(\pmb {\varSigma }^{*} \in {\mathbb {R}}^{n \times n}\) is a non–singular matrix, Eq. (A.20) results in
$$\begin{aligned}&{\mathbb {E}} \Big [ \exp \Big \{ {\varvec{s}}^{\top } {\varvec{X}} + {\varvec{X}}^{\top } \mathbf{V} {\varvec{X}} \Big \} \Big ] \nonumber \\&\quad = \frac{1}{\left( 2 \pi \right) ^{\frac{n}{2}} |\pmb {\varSigma } |^{\frac{1}{2}}} \int _{{\mathbb {R}}^{n}}^{} \exp \left\{ - \frac{1}{2} \left[ {\varvec{x}}^{\top } \pmb {\varSigma }^{*} {\varvec{x}} - 2 \left( \pmb {\mu }^{*} \right) ^{\top } \pmb {\varSigma }^{-1} {\varvec{x}} + \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} \mathrm {d}{\varvec{x}} \nonumber \\&\quad = \frac{\left( 2 \pi \right) ^{\frac{n}{2}} |\left( \pmb {\varSigma }^{*} \right) ^{-1} |^{\frac{1}{2}}}{\left( 2 \pi \right) ^{\frac{n}{2}} |\pmb {\varSigma } |^{\frac{1}{2}}} \exp \left\{ \frac{1}{2} \left[ \left( \pmb {\mu }^{*} \right) ^{\top } \pmb {\varSigma }^{-1} \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu }^{*} - \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} \nonumber \\&\qquad \times \underbrace{\int _{{\mathbb {R}}^{n}}^{} \frac{1}{\left( 2 \pi \right) ^{\frac{n}{2}} |\left( \pmb {\varSigma }^{*} \right) ^{-1} |^{\frac{1}{2}}} \exp \left\{ - \frac{1}{2} \left( {\varvec{x}}^{\top } - \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu } \right) \left\{ \left( \pmb {\varSigma }^{*} \right) ^{-1} \right\} ^{-1} \left( {\varvec{x}}^{\top } - \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu } \right) \right\} \mathrm {d}{\varvec{x}}}_{= 1} \nonumber \\&\quad = \frac{|\left( \pmb {\varSigma }^{*} \right) ^{-1} |^{\frac{1}{2}}}{|\pmb {\varSigma } |^{\frac{1}{2}}} \exp \left\{ \frac{1}{2} \left[ \left( \pmb {\mu }^{*} \right) ^{\top } \pmb {\varSigma }^{-1} \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu }^{*} - \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} . \end{aligned}$$
(A.21)
\(\square \)
Eq. (A.21) can be rewritten as follows:
$$\begin{aligned}&\frac{|\left( \pmb {\varSigma }^{*} \right) ^{-1} |^{\frac{1}{2}}}{|\pmb {\varSigma } |^{\frac{1}{2}}} \exp \left\{ \frac{1}{2} \left[ \left( \pmb {\mu }^{*} \right) ^{\top } \pmb {\varSigma }^{-1} \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu }^{*} - \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} \nonumber \\&\quad = \frac{\left|\left( \pmb {\varSigma }^{*} \right) ^{-1} \right|}{\left|\pmb {\varSigma } \right|} \exp \left\{ \frac{1}{2} \left[ \pmb {\mu }^{\top } \left\{ \pmb {\varSigma } \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} - \pmb {\varSigma }^{-1} \right\} \pmb {\mu }\nonumber \right. \right. \\&\left. \left. \quad + 2 {\varvec{s}}^{\top } \left( \pmb {\varSigma }^{*} \right) ^{-1} ( \pmb {\varSigma } )^{-1} \pmb {\mu } + {\varvec{s}}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} {\varvec{s}} \right] \right\} . \end{aligned}$$
(A.22)
Therefore, setting \({\varvec{s}}^{\top } := - \gamma \left[ {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right] \) and \(\mathbf{V} := - \frac{\gamma }{2} \left( \pmb {\xi }_{t} + \pmb {\xi }_{t}^{\top } \right) \) in Eq. (A.21) yields Eq. (A.17).
Substituting Eq. (A.17) and (A.18) into Eq. (A.16) and rearranging results in
$$\begin{aligned}&V_{t} \big [ {\varvec{s}}_{t} \big ]\nonumber \\&\quad = \sup _{{\varvec{q}}_{t} \in {\mathbb {R}}^{2}} - \exp \Big \{ - \gamma \Big [- {\varvec{q}}_{t}^{\top } \pmb {\tilde{\varOmega }}_{t} {\varvec{q}}_{t}\nonumber \\&\qquad + \Big [ {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\varTheta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\varXi }_{t} + {\varvec{v}}_{t - 1}^{\top } \pmb {\varPhi }_{t} + \pmb {\varPsi }_{t}^{\top } \Big ] {\varvec{q}}_{t} + W_{t} - {\varvec{P}}_{t}^{\top } {\overline{\varvec{Q}}}_{t} \nonumber \\&\qquad + {\overline{\varvec{Q}}}_{t}^{\top } \Big [ \mathbf{G}_{t + 1} - \frac{1}{2} \gamma \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } - \frac{1}{2} \gamma \pmb {\varSigma }_{t}^{\pmb {\varepsilon }} \Big ] {\overline{\varvec{Q}}}_{t} + \Big [ {\varvec{H}}_{t + 1}^{\top } + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } \nonumber \\&\qquad - \gamma \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } - \left( \pmb {\mu }_{t}^{\pmb {\varepsilon }} \right) ^{\top } \Big ] {\overline{\varvec{Q}}}_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \Big [ ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} + \mathrm {e}^{- \rho } \mathbf{I}_{t} - \gamma \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } \Big ] {\varvec{R}}_{t} \nonumber \\&\qquad + {\varvec{R}}_{t}^{\top } \Big [ \mathrm {e}^{- 2 \rho } \mathbf{J}_{t + 1} - \frac{1}{2} \gamma \pmb {\theta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } \Big ] {\varvec{R}}_{t}\nonumber \\&\qquad + \Big [ \mathrm {e}^{- \rho } {\varvec{L}}_{t + 1}^{\top } + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } - \gamma \left( \pmb {\phi }_{t} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } \Big ] {\varvec{R}}_{t} \nonumber \\&\qquad + {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1} +{\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1}\nonumber \\&\quad - \frac{1}{2 \gamma } {\varvec{v}}_{t - 1}^{\top } \left( \mathbf{b}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1} \nonumber \\&\qquad + \Big [ - \frac{1}{\gamma } \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} \mathbf{b}_{t}^{{\varvec{v}}} + \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} \Big ] {\varvec{v}}_{t - 1} + Z_{t + 1} - \frac{1}{2 \gamma } \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} {\varvec{a}}_{t}^{{\varvec{v}}} \nonumber \\&\qquad + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\phi }_{t} - \frac{1}{2 \gamma } \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\phi }_{t} + x_{t} \Big ] \Big \}, \end{aligned}$$
(A.23)
where \(\pmb {\varSigma }_{t}^{*} := \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} + \gamma \left( \pmb {\xi }_{t} + \pmb {\xi }_{t}^{\top } \right) \), \(\pmb {\varSigma }_{t}^{**} := \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} - \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1}\), \(\displaystyle {x_{t} := \log \frac{\left|\left( \pmb {\varSigma }_{t}^{*} \right) \right|}{\left|\pmb {\varSigma }_{t}^{{\varvec{v}}} \right|}}\), and
$$\begin{aligned} \pmb {\tilde{\varOmega }}_{t}&:= \frac{1}{2} \left( \pmb {\varOmega }_{t} + \pmb {\varOmega }_{t}^{\top } \right) \nonumber \\&= \frac{1}{2} \pmb {\varLambda }_{t} \left( \mathbf{I}_{2} - \pmb {\varPi }_{t} \right) + \frac{1}{2} \left\{ \pmb {\varLambda }_{t} \left( \mathbf{I}_{2} - \pmb {\varPi }_{t} \right) \right\} ^{\top } - \mathbf{G}_{t + 1} + \frac{1}{2} \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} + \frac{1}{2} \left\{ \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} \right\} ^{\top } \nonumber \\&\quad - \mathrm {e}^{-2\rho } \pmb {\varLambda }_{t} \mathbf{A}_{t} \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} + \frac{1}{2} \gamma \pmb {\delta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top } + \frac{1}{2} \gamma \pmb {\varSigma }_{t}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varTheta }_{t}&:= - \pmb {\varPi }_{t} \pmb {\varLambda }_{t} - 2 \mathbf{G}_{t + 1} + \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} - \gamma \pmb {\eta }_{t}\left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top } + \gamma \pmb {\varSigma }_{t}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varXi }_{t}&:= - ( 1 - \mathrm {e}^{-\rho } ) \mathbf{I}_{2} - \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} + 2 \mathrm {e}^{- 2\rho } \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} - \gamma \pmb {\theta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top } \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPhi }_{t}&:= \left( \mathbf{b}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top } \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPsi }_{t}^{\top }&:= - {\varvec{H}}_{t + 1}^{\top } + \mathrm {e}^{-\rho } {\varvec{L}}_{t + 1}^{\top } \mathbf{A}_{t} \pmb {\varLambda }_{t} + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top }\nonumber \\&\quad - \gamma \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top } + \left( \pmb {\mu }_{t}^{\pmb {\varepsilon }} \right) ^{\top } \ ( \in {\mathbb {R}}^{1 \times 2} ). \end{aligned}$$
(A.24)
Thus, under the following assumptions (or regularity conditions):
-
1.
\(\pmb {\varSigma }_{t}^{*} := \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} + \gamma \left( \pmb {\xi }_{t} + \pmb {\xi }_{t}^{\top } \right) \) is non-singular;
-
2.
\(\pmb {\tilde{\varOmega }}_{t} := \frac{1}{2} \left( \pmb {\varOmega }_{t} + \pmb {\varOmega }_{t}^{\top } \right) \) is positive (semi)definite,
we can derive the optimal execution volume at time t via the same method used in step 2 and obtain as follows:
$$\begin{aligned} {\varvec{q}}_{t}^{*}&= \pmb {\tilde{\varOmega }}_{t}^{-1} \left\{ \pmb {\varTheta }_{t}^{\top } {\overline{\varvec{Q}}}_{t} + \pmb {\varXi }_{t}^{\top } {\varvec{R}}_{t} + \pmb {\varPhi }_{t}^{\top } {\varvec{v}}_{t - 1} + \pmb {\varPsi }_{t} \right\} \nonumber \\&\quad \left( =: {\varvec{a}}_{t} + \mathbf{b}_{t} {\overline{\varvec{Q}}}_{t} + \mathbf{c}_{t} {\varvec{R}}_{t} + \mathbf{d}_{t} {\varvec{v}}_{t - 1} \right) . \end{aligned}$$
(A.25)
Finally, by substituting this into Eq. (A.23) the optimal value function becomes
$$\begin{aligned} V_{t} \big [ {\varvec{s}}_{t} \big ]&= - \exp \Big \{ - \gamma \Big [ W_{t} - {\varvec{P}}_{t}^{\top } {\overline{\varvec{Q}}}_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \mathbf{G}_{t} {\overline{\varvec{Q}}}_{t} + {\varvec{H}}_{t}^{\top } {\overline{\varvec{Q}}}_{t}\nonumber \\&\quad + {\overline{\varvec{Q}}}_{t}^{\top } \mathbf{I}_{t} {\varvec{R}}_{t} + {\varvec{R}}_{t}^{\top } \mathbf{J}_{t} {\varvec{R}}_{t} + {\varvec{L}}_{t}^{\top } {\varvec{R}}_{t} \nonumber \\&\quad + {\overline{\varvec{Q}}}_{t}^{\top } \mathbf{M}_{t} {\varvec{v}}_{t - 1} + {\varvec{R}}_{t}^{\top } \mathbf{N}_{t} {\varvec{v}}_{t - 1} + {\varvec{v}}_{t - 1}^{\top } \mathbf{X}_{t} {\varvec{v}}_{t - 1} + {\varvec{Y}}_{t}^{\top } {\varvec{v}}_{t - 1} + Z_{t} \Big ] \Big \}, \end{aligned}$$
(A.26)
where
$$\begin{aligned} \mathbf{G}_{t}&:= \mathbf{G}_{t + 1} - \frac{1}{2} \gamma \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } - \frac{1}{2} \gamma \pmb {\varSigma }_{t}^{\pmb {\varepsilon }} + \frac{1}{4} \pmb {\varTheta }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varTheta }_{t}^{\top }; \nonumber \\ {\varvec{H}}_{t}^{\top }&:= {\varvec{H}}_{t + 1}^{\top } + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } - \gamma \pmb {\varphi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } - \left( \pmb {\mu }_{t}^{\pmb {\varepsilon }} \right) ^{\top }\nonumber \\&\quad + \frac{1}{2} \pmb {\varPsi }_{t}^{\top } \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varTheta }_{t}^{\top }; \nonumber \\ \mathbf{I}_{t}&:= ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} + \mathrm {e}^{- \rho } \mathbf{I}_{t + 1} - \gamma \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } + \frac{1}{2} \pmb {\varTheta }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varXi }_{t}^{\top }; \nonumber \\ \mathbf{J}_{t}&:= \mathrm {e}^{- 2 \rho } \mathbf{J}_{t + 1} - \frac{1}{2} \gamma \pmb {\theta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } + \frac{1}{4} \pmb {\varXi }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varXi }_{t}^{\top }; \nonumber \\ {\varvec{L}}_{t}^{\top }&:= \mathrm {e}^{- \rho } {\varvec{L}}_{t + 1}^{\top } + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } - \gamma \left( \pmb {\phi }_{t} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top }\nonumber \\&\quad + \frac{1}{2} \pmb {\varPsi }_{t}^{\top } \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varXi }_{t}^{\top }; \nonumber \\ \mathbf{M}_{t}&:= \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} + \frac{1}{2} \pmb {\varTheta }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varPhi }_{t}^{\top }; \nonumber \\ \mathbf{N}_{t}&:= \pmb {\theta }_{t} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} +\frac{1}{2} \pmb {\varXi }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varPhi }_{t}^{\top }; \nonumber \\ \mathbf{X}_{t}&:= - \frac{1}{2 \gamma } \left( \mathbf{b}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} \mathbf{b}_{t}^{{\varvec{v}}} + \frac{1}{4} \pmb {\varPhi }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varPhi }_{t}^{\top }; \nonumber \\ {\varvec{Y}}_{t}^{\top }&:= - \frac{1}{\gamma } \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} \mathbf{b}_{t}^{{\varvec{v}}} + \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} + \frac{1}{2} \pmb {\varPsi }_{t}^{\top } \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varPhi }_{t}^{\top }; \nonumber \\ Z_{t}&:= Z_{t + 1} - \frac{1}{2 \gamma } \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} {\varvec{a}}_{t}^{{\varvec{v}}} + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\phi }_{t} - \frac{1}{2 \gamma } \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\phi }_{t} \nonumber \\&\quad + x_{t} + \frac{1}{4} \pmb {\varPsi }_{t}^{\top } \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varPsi }_{t}. \end{aligned}$$
(A.27)
\(\square \)
Proof of Theorem 2
The value function at maturity becomes
$$\begin{aligned} V_{T + 1} \big [ s_{T + 1} \big ]&= - \exp \Big \{ - \gamma \Big [ W_{T + 1} - \left( {\varvec{P}}_{T + 1} + \pmb {\chi }_{T + 1} {\overline{\varvec{Q}}}_{T + 1} \right) ^{\top } {\overline{\varvec{Q}}}_{T + 1} \Big ] \Big \}, \end{aligned}$$
(B.1)
and thereby, the optimal value function at time T is calculated as follows:
$$\begin{aligned} V_{T} \big [ {\varvec{s}}_{T} \big ]&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ V_{T + 1} \big [ W_{T + 1}, {\varvec{P}}_{T + 1}, {\overline{\varvec{Q}}}_{T + 1}, {\varvec{R}}_{T + 1}, {\varvec{v}}_{T} \big ] \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ] \nonumber \\&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}}{\mathbb {E}} \Big [ - \exp \Big \{ - \gamma \Big [ W_{T + 1} - \left( {\varvec{P}}_{T + 1} + \pmb {\chi }_{T + 1} {\overline{\varvec{Q}}}_{T + 1} \right) {\overline{\varvec{Q}}}_{T + 1} \Big ] \Big \} \Big \vert {\varvec{s}}_{T} \Big ] \nonumber \\&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} - \exp \Big \{ - \gamma \Big [ - {\varvec{q}}_{T}^{\top } \pmb {\tilde{\varOmega }}_{T} {\varvec{q}}_{T}\nonumber \\&\quad + \Big [ \overline{{\varvec{Q}}}_{T}^{\top } \pmb {\varTheta }_{T} + {\varvec{R}}_{T}^{\top } \pmb {\varXi }_{T} + {\varvec{v}}_{T - 1}^{\top } \pmb {\varPhi }_{T} + \pmb {\varPsi }_{T}^{\top } \Big ] {\varvec{q}}_{T} + W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{t} \nonumber \\&\quad + \overline{{\varvec{Q}}}_{T}^{\top } \Big [ - \left( \pmb {\chi }_{T + 1} + \pmb {\chi }_{T + 1}^{\top } \right) - \frac{1}{2} \gamma \pmb {\varPi }_{T} \pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \frac{1}{2} \gamma \pmb {\varSigma }_{T}^{\pmb {\varepsilon }} \Big ] \overline{{\varvec{Q}}}_{T} \nonumber \\&\quad + \Big [ - \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \left( \pmb {\mu }_{T}^{\pmb {\varepsilon }} \right) ^{\top } \Big ] \overline{{\varvec{Q}}}_{T} + ( 1 - \mathrm {e}^{-\rho } ) \overline{{\varvec{Q}}}_{T}^{\top } {\varvec{R}}_{T} - {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\varPi }_{T} \pmb {\kappa }_{T} \mathbf{b}_{T}^{{\varvec{v}}} {\varvec{v}}_{T - 1} \Big ] \Big \}, \end{aligned}$$
(B.2)
where \(\pmb {\varPi }_{T} := \mathrm {e}^{-\rho } \mathbf{A}_{T} + \mathbf{B}_{T}\), and
$$\begin{aligned} \pmb {\tilde{\varOmega }}_{T}&:= \frac{1}{2} \left( \pmb {\varOmega }_{T} + \pmb {\varOmega }_{T}^{\top } \right) \nonumber \\&= \frac{1}{2} \pmb {\varLambda }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) \nonumber \\&\quad + \frac{1}{2} \left\{ \pmb {\varLambda }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) \right\} ^{\top } + \frac{1}{2} \left( \pmb {\chi }_{T + 1} + \pmb {\chi }_{T + 1}^{\top } \right) + \frac{1}{2} \gamma \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) \pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) \nonumber \\&\quad + \frac{1}{2} \gamma \pmb {\varSigma }_{T}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varTheta }_{T}&:= - \pmb {\varPi }_{T} \pmb {\varLambda }_{T} + \left( \pmb {\chi }_{T + 1} + \pmb {\chi }_{T + 1}^{\top } \right) - \gamma \pmb {\varPi }_{T}\pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) + \gamma \pmb {\varSigma }_{T}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varXi }_{T}&:= - ( 1 - \mathrm {e}^{-\rho } ) \mathbf{I}_{2} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPhi }_{T}&:= - \left( \mathbf{b}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPsi }_{T}^{\top }&:= - \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) + \left( \pmb {\mu }_{T}^{\pmb {\varepsilon }} \right) ^{\top } \ ( \in {\mathbb {R}}^{1 \times 2} ). \end{aligned}$$
(B.3)
We can derive the optimal execution volume satisfying Eq. (B.2) by obtaining the optimal execution volume \({\varvec{q}}_{t}^{*}\) which attains the maximum of
$$\begin{aligned}&K_{T} \big [ {\varvec{q}}_{T} \big ] := - {\varvec{q}}_{T}^{\top } \pmb {\tilde{\varOmega }}_{T} {\varvec{q}}_{T} + \Big [ {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\varTheta }_{T} + {\varvec{R}}_{T}^{\top } \pmb {\varXi }_{T} + {\varvec{v}}_{T - 1}^{\top } \pmb {\varPhi }_{T} + \pmb {\varPsi }_{T}^{\top } \Big ] {\varvec{q}}_{T} + W_{T} - {\varvec{P}}_{T}^{\top } \overline{{\varvec{Q}}}_{T} \nonumber \\&\quad + {\overline{\varvec{Q}}}_{T}^{\top } \Big [ - \left( \pmb {\chi }_{T + 1} + \pmb {\chi }_{T + 1}^{\top } \right) - \frac{1}{2} \gamma \pmb {\varPi }_{T} \pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \frac{1}{2} \gamma \pmb {\varSigma }_{T}^{\pmb {\varepsilon }} \Big ] {\overline{\varvec{Q}}}_{T} \nonumber \\&\quad + \Big [ - \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \left( \pmb {\mu }_{T}^{\pmb {\varepsilon }} \right) ^{\top } \Big ] {\overline{\varvec{Q}}}_{T} + ( 1 - \mathrm {e}^{-\rho } ) {\overline{\varvec{Q}}}_{T}^{\top } {\varvec{R}}_{T} - \overline{{\varvec{Q}}}_{T}^{\top } \pmb {\varPi }_{T} \pmb {\kappa }_{T} \mathbf{b}_{T}^{{\varvec{v}}} {\varvec{v}}_{T - 1}. \end{aligned}$$
(B.4)
Eq. (B.4) is a quadratic function with a negative definite matrix \(\pmb {\varOmega }_{T} + \pmb {\varOmega }_{T}^{\top }\) with respect to \({\varvec{q}}_{T}\), and thereby a concave function with respect to \({\varvec{q}}_{T}\), which leads to the concavity of Eq. (B.2) with respect to \({\varvec{q}}_{T}\). Therefore, by completing the square of \(K_{T} \big [ {\varvec{q}}_{T} \big ]\) with respect to \({\varvec{q}}_{T}\), we obtain the optimal execution volume at time \(t = T\):
$$\begin{aligned} {\varvec{q}}_{T}^{*}&=: \mathbf{f} ( {\varvec{s}}_{T} ) = \pmb {\tilde{\varOmega }}_{T}^{-1} \left\{ \pmb {\varTheta }_{T}^{\top } \overline{{\varvec{Q}}}_{T} + \pmb {\varXi }_{T}^{\top } {\varvec{R}}_{T} + \pmb {\varPhi }_{T}^{\top } {\varvec{v}}_{T - 1} + \pmb {\varPsi }_{T} \right\} \nonumber \\&\quad \left( =: {\varvec{a}}_{T - 1}^{*} + \mathbf{b}_{T - 1}^{*} {\overline{\varvec{Q}}}_{T - 1} + \mathbf{c}_{T - 1}^{*} {\varvec{R}}_{T - 1} + \mathbf{d}_{T - 1}^{*} {\varvec{v}}_{T - 1} \right) , \end{aligned}$$
(B.5)
where
$$\begin{aligned} {\varvec{a}}_{T}^{*} := \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPsi }_{T}; \quad \mathbf{b}_{T}^{*} := \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varTheta }_{T}^{\top }; \quad \mathbf{c}_{T}^{*} := \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varXi }_{T}^{\top }; \quad \mathbf{d}_{T}^{*} := \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPhi }_{T}^{\top }, \end{aligned}$$
(B.6)
and by substituting this into Eq. (B.2) the optimal value function becomes
$$\begin{aligned} V_{T} \big [ {\varvec{s}}_{T} \big ]&= - \exp \Big \{ - \gamma \Big [ W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{G}_{T}^{*} {\overline{\varvec{Q}}}_{T} + {\varvec{H}}_{T}^{*\top } {\overline{\varvec{Q}}}_{T}\nonumber \\&\quad + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{I}_{T}^{*} {\varvec{R}}_{T} + {\varvec{R}}_{T}^{\top } \mathbf{J}_{T}^{*} {\varvec{R}}_{T} + {\varvec{L}}_{T}^{*\top } {\varvec{R}}_{T} \nonumber \\&\quad + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{M}_{T}^{*} {\varvec{v}}_{T - 1} + {\varvec{R}}_{T}^{\top } \mathbf{N}_{T}^{*} {\varvec{v}}_{T - 1} + {\varvec{v}}_{T - 1}^{\top } \mathbf{X}_{T}^{*} {\varvec{v}}_{T - 1} + {\varvec{Y}}_{T}^{*\top } {\varvec{v}}_{T - 1} + Z_{T}^{*} \Big ] \Big \}, \end{aligned}$$
(B.7)
where
$$\begin{aligned} \mathbf{G}_{T}^{*}&:= - \left( \pmb {\chi }_{T + 1} + \pmb {\chi }_{T + 1}^{\top } \right) - \frac{1}{2} \gamma \pmb {\varPi }_{T} \pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \frac{1}{2} \gamma \pmb {\varSigma }_{T}^{\pmb {\varepsilon }} + \frac{1}{4} \pmb {\varTheta }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varTheta }_{T}^{\top }; \nonumber \\ {\varvec{H}}_{T}^{*\top }&:= - \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \left( \pmb {\mu }_{T}^{\pmb {\varepsilon }} \right) ^{\top } + \frac{1}{2} \pmb {\varPsi }_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varTheta }_{T - 1}^{\top }; \nonumber \\ \mathbf{I}_{T}^{*}&:= ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} + \frac{1}{2} \pmb {\varTheta }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varXi }_{T}^{\top }; \quad \mathbf{J}_{T}^{*} := \frac{1}{4} \pmb {\varXi }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varXi }_{T}^{\top }; \quad {\varvec{L}}_{T}^{*\top } := \frac{1}{2} \pmb {\varPsi }_{T}^{\top } \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varXi }_{T}^{\top }; \nonumber \\ \mathbf{M}_{T}^{*}&:= - \pmb {\varPi }_{T} \pmb {\kappa }_{T} \mathbf{b}_{T}^{{\varvec{v}}} + \frac{1}{2} \pmb {\varTheta }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPhi }_{T}^{\top }; \quad \mathbf{N}_{T}^{*} := \frac{1}{2} \pmb {\varXi }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPhi }_{T}^{\top }; \nonumber \\ \mathbf{X}_{T}^{*}&:= \frac{1}{4} \pmb {\varPhi }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPhi }_{T}^{\top }; \quad {\varvec{Y}}_{T}^{*\top } := \frac{1}{2} \pmb {\varPsi }_{T}^{\top } \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPhi }_{T}^{\top }; \quad Z_{T}^{*} := \frac{1}{4} \pmb {\varPsi }_{T}^{\top } \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPsi }_{T}. \end{aligned}$$
(B.8)
For \(t \in \{ { T - 1, \ldots , 1 } \}\), we can recursively derive the optimal execution volume and optimal value function at each time by a similar derivation which we use to obtain the optimal execution volume in the last subsection for time \(t \in \{ { T - 2, \ldots , 1 } \}\). \(\square \)