Skip to main content
Log in

Optimal Pair–Trade Execution with Generalized Cross–Impact

  • Original Research
  • Published:
Asia-Pacific Financial Markets Aims and scope Submit manuscript

Abstract

We examine a discrete–time optimal pair–trade execution problem with generalized cross–impact. This research is an extension of Fukasawa et al. (2020b), which considers the price impact of aggregate random orders posed by small traders with a Markovian dependence. We focus on how a risk–averse large trader optimally executes two correlated assets to maximize his/her expected utility from the terminal wealth over a finite horizon. A Markov decision process modeling constitutes the basis for the formulation of the optimal pair–trade execution problem. Then, under some regularity conditions, the backward induction method of dynamic programming enables us to derive the optimal pair–trade execution strategy and its associated optimal value function. The trading orders of each risky asset posed by small traders do affect the optimal execution volume of both risky assets. Moreover, numerical results with simulation experiments show that the cross–impact affects the optimal execution strategy and a round–trip trade exists for the large trader to utilize a ‘statistical’ arbitrage and to increase his/her expected utility under our model setting of cross–impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. The positive \(q_{t}^{i}\) for \(t \in \{ { 1, \ldots , T } \}\) stand for the acquisition and negative \(q_{t}^{i}\) the liquidation of the risky asset \(i \in \{ { 1, 2 } \}\). This setting allows us to establish a similar setup for a selling problem of a large trader.

  2. This assumption would be inconsistent with the situation observed in a real market. Cartea and Jaimungal (2016a) and Cartea and Jaimungal (2016b) conduct a linear regression of price changes on net order–flow using trading data obtained from Nasdaq to estimate the permanent and temporary price impact. Then they reveal that assuming linear price impact is compatible with the real stock market and that the price impact caused by both buy and sell trades are deemed as the same from a statistical analysis point of view.

  3. In the rest of this paper, we suppose that the two stochastic processes, \(\pmb {\omega }_{t}\) and \(\pmb {\varepsilon }_{t}\) for \(t \in \{ { 1, \ldots , T } \}\) are mutually independent for simplicity.

  4. We also draw the boxplot in the figures. The bold line in the center of the boxplot shows the median of the data. The top end of the box represents the third quartile, and the bottom end of the box represents the first quartile. The upper and lower whiskers are the largest and smallest data points in the range of (1st quartile − 1.5 \(\times \) (3rd quartile − 1.5 \(\times \) (3rd quartile − 1st quartile)) and above (3rd quartile \(+\) 1.5 \(\times \) (3rd quartile − 1st quartile)) and below, respectively. Circles represent data points that are larger or smaller than the whiskers, i.e., outliers.

  5. The feature of the optimal execution volume at maturity is also explained by the same reason in the rest.

References

  • Alfonsi, A., Klöck, F., & Schied, A. (2016). Multivariate transient price impact and matrix-valued positive definite functions. Mathematics of Operations Research, 41(3), 914–934.

    Article  Google Scholar 

  • Almgren, R., & Chriss, N. (2001). Optimal execution of portfolio transactions. Journal of Risk, 3, 5–40.

    Article  Google Scholar 

  • Benzaquen, M., Mastromatteo, I., Eisler, Z., & Bouchaud, J. P. (2017). Dissecting cross-impact on stock markets: An empirical analysis. Journal of Statistical Mechanics: Theory and Experiment, 2017(2), 023406.

    Article  Google Scholar 

  • Bertsimas, D., & Lo, A. W. (1998). Optimal control of execution costs. Journal of Financial Markets, 1(1), 1–50.

    Article  Google Scholar 

  • Bouchard, B., Fukasawa, M., Herdegen, M., & Muhle-Karbe, J. (2018). Equilibrium returns with transaction costs. Finance and Stochastics, 22(3), 569–601.

    Article  Google Scholar 

  • Bouchaud, J. P., Gefen, Y., Potters, M., & Wyart, M. (2004). Fluctuations and response in financial markets: The subtle nature of random price changes. Quantitative Finance, 4(2), 176–190.

    Article  Google Scholar 

  • Cartea, Á., & Jaimungal, S. (2016a). Incorporating order-flow into optimal execution. Mathematics and Financial Economics, 10(3), 339–364.

    Article  Google Scholar 

  • Cartea, Á., & Jaimungal, S. (2016b). A closed-form execution strategy to target volume weighted average price. SIAM Journal on Financial Mathematics, 7(1), 760–785.

    Article  Google Scholar 

  • Cartea, Á., Gan, L., & Jaimungal, S. (2019). Trading co-integrated assets with price impact. Mathematical Finance, 29(2), 542–567.

    Article  Google Scholar 

  • Cordoni, F., & Lillo, F. (2020). Instabilities in Multi-Asset and Multi-Agent Market Impact Games. arXiv preprint arXiv:2004.03546.

  • Eisler, Z., Bouchaud, J. P., & Kockelkoren, J. (2012). The price impact of order book events: Market orders, limit orders and cancellations. Quantitative Finance, 12(9), 1395–1419.

    Article  Google Scholar 

  • Fukasawa, M., Ohnishi, M., & Shimoshimizu, M. (2019). Optimal execution strategies with generalized price impacts in a continuous–time setting. Paper presented at 51st JAFEE (summer) Conference, Seijo University, 5-6 August 2019.

  • Fukasawa, M., Ohnishi, M., & Shimoshimizu, M. (2020a). Optimal execution strategies with generalized price impact in a discrete-time setting. RIMS Kokyuroku, 2158, 66–79.

    Google Scholar 

  • Fukasawa, M., Ohnishi, M., & Shimoshimizu, M. (2020b). Discrete-time optimal execution under a generalized price impact model with Markovian exogenous orders. to appear in International Journal of Theoretical and Applied Finance.

  • Gatev, E., Goetzmann, W. N., & Rouwenhorst, K. G. (2006). Pairs trading: Performance of a relative-value arbitrage rule. The Review of Financial Studies, 19(3), 797–827.

    Article  Google Scholar 

  • Gatheral, J. (2010). No-dynamic-arbitrage and market impact. Quantitative Finance, 10(7), 749–759.

    Article  Google Scholar 

  • Gârleanu, N., & Pedersen, L. H. (2013). Dynamic trading with predictable returns and transaction costs. The Journal of Finance, 68(6), 2309–2340.

    Article  Google Scholar 

  • Gârleanu, N., & Pedersen, L. H. (2016). Dynamic portfolio choice with frictions. Journal of Economic Theory, 165, 487–516.

    Article  Google Scholar 

  • Guéant, O. (2016). The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making. USA: CRC Press.

    Book  Google Scholar 

  • Hasbrouck, J. (1991). Measuring the information content of stock trades. The Journal of Finance, 46(1), 179–207.

    Article  Google Scholar 

  • Hasbrouck, J., & Seppi, D. J. (2001). Common factors in prices, order flows, and liquidity. Journal of Financial Economics, 59(3), 383–411.

    Article  Google Scholar 

  • Hamilton, J. D. (2020). Time series analysis. USA: Princeton University Press.

    Book  Google Scholar 

  • Huberman, G., & Stanzl, W. (2004). Price manipulation and quasi-arbitrage. Econometrica, 72(4), 1247–1275.

    Article  Google Scholar 

  • Kunou, S., & Ohnishi, M. (2010). Optimal execution strategies with price impact. RIMS Kokyuroku, 1675, 234–247.

    Google Scholar 

  • Kuno, S., & Ohnishi, M. (2015). Optimal execution in illiquid market with the absence of price manipulation. Journal of Mathematical Finance, 5(1), 1–15.

    Article  Google Scholar 

  • Kuno, S., Ohnishi, M., & Shimizu, P. (2016). Optimal off-exchange execution with closing price. Journal of Mathematical Finance, 7(1), 54–64.

    Article  Google Scholar 

  • Kuno, S., Ohnishi, M., & Shimoshimizu, M. (2018). Optimal execution strategies with generalized price impact models. RIMS Kokyuroku, 2078, 77–83.

    Google Scholar 

  • Li, Y., Guo, J. E., Lai, K. K., & Shi, J. (2020). Optimal portfolio liquidation with cross-price impacts on trading. Operational Research, 1–20.

  • Luo, X., & Schied, A. (2018) Nash equilibrium for risk-averse investors in a market impact game with transient price impact. arXiv preprint arXiv:1807.03813, 2018.

  • Ma, G., Siu, C. C., & Zhu, S. P. (2019). Dynamic portfolio choice with return predictability and transaction costs. European Journal of Operational Research, 278(3), 976–988.

    Article  Google Scholar 

  • Meenakshi, A. R., & Rajian, C. (1999). On a product of positive semidefinite matrices. Linear Algebra and its Applications, 295(1–3), 3–6.

    Article  Google Scholar 

  • Meucci, A. (2009). Review of statistical arbitrage, cointegration, and multivariate Ornstein-Uhlenbeck. Cointegration, and Multivariate Ornstein-Uhlenbeck (May 14, 2009). Available at http://www2.stat.duke.edu/~scs/Projects/StructuralPhylogeny/multivariateOU.pdf.

  • Min, S., Maglaras, C., & Moallemi, C. C. (2018). Cross-sectional variation of intraday liquidity, cross-impact, and their effect on portfolio execution. Columbia Business School Research Paper, (19-4).

  • Obizhaeva, A. A., & Wang, J. (2013). Optimal trading strategy and supply/demand dynamics. Journal of Financial Markets, 16(1), 1–32.

    Article  Google Scholar 

  • Ohnishi, M., & Shimoshimizu, M. (2019). Equilibrium execution strategy with generalized price impacts. RIMS Kokyuroku, 2111, 84–106.

    Google Scholar 

  • Ohnishi, M., & Shimoshimizu, M. (2020). Optimal and equilibrium execution strategies with generalized price impact. Quantitative Finance, 20(10), 1625–1644.

    Article  Google Scholar 

  • Ohnishi, M., & Shimoshimizu, M. (2021). Optimal pair-trade execution with generalized cross-impact. RIMS Kokyuroku, 2173, 42–62.

    Google Scholar 

  • Potters, M., & Bouchaud, J. P. (2003). More statistical properties of order books and price impact. Physica A: Statistical Mechanics and its Applications, 324(1–2), 133–140.

    Article  Google Scholar 

  • Schied, A., & Zhang, T. (2019). A market impact game under transient price impact. Mathematics of Operations Research, 44(1), 102–121.

    Google Scholar 

  • Schneider, M., & Lillo, F. (2019). Cross-impact and no-dynamic-arbitrage. Quantitative Finance, 19(1), 137–154.

    Article  Google Scholar 

  • Schöneborn, T. (2008). Trade execution in illiquid markets: Optimal stochastic control and multi-agent equilibria. Doctoral dissertation, Technische Universität Berlin.

  • Tin-Zhu, H. (1995). A note on generalized diagonally dominant matrices. Linear Algebra and its Applications, 225, 237–242.

    Article  Google Scholar 

  • Tsoukalas, G., Wang, J., & Giesecke, K. (2019). Dynamic portfolio execution. Management Science, 65(5), 2015–2040.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Rei Yamamoto for closely examining our preliminary draft and the comments at the Nippon Finance Conference 2020 Autumn. Also, we would like to thank two anonymous referees for their careful reading of earlier versions of our manuscript and their many constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Shimoshimizu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Japan Society for the Promotion of Science under KAKENHI [Grant Numbers 17K01255 and 19J10501].

Appendices

Appendix

Proof of Theorem 1

We derive the optimal execution volume \({\varvec{q}}_{t}^{*}\) at time \(t \in \{ { 1, \ldots , T } \}\) by backward induction method of dynamic programming from the maturity T via the following three steps.

Step 1:

From the assumption that the large trader must unwind all the remainder of his/her position at time \(t = T\),

$$\begin{aligned} {\overline{\varvec{Q}}}_{T + 1} = {\overline{\varvec{Q}}}_{T} - {\varvec{q}}_{T} = {\varvec{0}}, \end{aligned}$$
(A.1)

must hold, which yields \({\overline{\varvec{Q}}}_{T} = {\varvec{q}}_{T}\). Then, for \(t = T\),

$$\begin{aligned} V_{T} \big [ {\varvec{s}}_{T} \big ]&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ V_{T + 1} \big [ {\varvec{s}}_{T + 1} \big ] \Big \vert {\varvec{s}}_{T} \Big ] \nonumber \\&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ V_{T + 1} \big [ W_{T + 1}, {\varvec{P}}_{T + 1}, {\overline{\varvec{Q}}}_{T + 1}, {\varvec{R}}_{T + 1}, {\varvec{v}}_{T} \big ] \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ] \nonumber \\&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ - \exp \left\{ - \gamma W_{T + 1} \right\} \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ] \nonumber \\&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ - \exp \left\{ - \gamma \big [ W_{T} - \left[ {\varvec{P}}_{T} + \left( \pmb {\varLambda }_{T} {\varvec{q}}_{T} + \pmb {\kappa }_{T} {\varvec{v}}_{T} \right) \right] ^{\top } {\varvec{q}}_{T} \big ] \right\} \nonumber \\&\qquad \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ] \nonumber \\&= - \exp \left\{ - \gamma \big [ W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} - {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\varLambda }_{T} {\overline{\varvec{Q}}}_{T} \big ] \right\} \nonumber \\&\quad \times {\mathbb {E}} \Big [ \exp \left\{ \gamma {\varvec{v}}_{T}^{\top } \pmb {\kappa }_{T}^{\top } {\overline{\varvec{Q}}}_{T} \right\} \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ]. \end{aligned}$$
(A.2)

Using the fact that \({\varvec{v}}_{T}^{\top } \pmb {\kappa }_{T}^{\top } {\overline{\varvec{Q}}}_{T} = {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} {\varvec{v}}_{T} (\in {\mathbb {R}})\) and the moment–generating function with respect to \({\varvec{v}}_{T}\), we have

$$\begin{aligned}&{\mathbb {E}} \Big [ \exp \left\{ \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} {\varvec{v}}_{T} \right\} \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ] \nonumber \\&\quad = \exp \left\{ \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \left( {\varvec{a}}_{T}^{{\varvec{v}}} + \mathbf{b}_{T}^{{\varvec{v}}} {\varvec{v}}_{T - 1} \right) + \frac{1}{2} \left( \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \right) \pmb {\varSigma }_{T}^{{\varvec{v}}} \left( \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \right) ^{\top } \right\} . \end{aligned}$$
(A.3)

Thus, Eq. (A.2) becomes

$$\begin{aligned} V_{T} \big [ {\varvec{s}}_{T} \big ]&= - \exp \left\{ - \gamma \Big [ W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} - {\overline{\varvec{Q}}}_{T}^{T} \pmb {\varLambda }_{T} {\overline{\varvec{Q}}}_{T} \Big ] \right\} \nonumber \\&\quad \times \exp \left\{ \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \left( {\varvec{a}}_{T}^{{\varvec{v}}} + \mathbf{b}_{T}^{{\varvec{v}}} {\varvec{v}}_{T - 1} \right) + \frac{1}{2} \left( \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \right) \pmb {\varSigma }_{T}^{{\varvec{v}}} \left( \gamma {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} \right) ^{\top } \right\} \nonumber \\&= - \exp \Big \{ - \gamma \Big [ W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{G}_{T} {\overline{\varvec{Q}}}_{T} + {\varvec{H}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{M}_{T} {\varvec{v}}_{T - 1} \Big ] \Big \}, \end{aligned}$$
(A.4)

where we have used the fact that \({\overline{\varvec{Q}}}_{T}^{\top } \pmb {\kappa }_{T} {\varvec{a}}_{T}^{{\varvec{v}}} = \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T}^{\top } {\overline{\varvec{Q}}}_{T}\) and

$$\begin{aligned} \mathbf{G}_{T}&:= - \pmb {\varLambda }_{T} - \frac{1}{2} \gamma \pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T}^{\top } (\in {\mathbb {R}}^{2 \times 2}); \nonumber \\ {\varvec{H}}_{T}^{\top }&:= - \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} (\in {\mathbb {R}}^{1 \times 2}); \nonumber \\ \mathbf{M}_{T}&:= - \pmb {\kappa }_{T} \mathbf{b}_{T}^{{\varvec{v}}} (\in {\mathbb {R}}^{2 \times 2}). \end{aligned}$$
(A.5)

Note that \(\mathbf{G}_{T}\) is negative definite (by Assumptions 1 and 2).

Step 2:

For \(t = T - 1\), we have

$$\begin{aligned}&V_{T - 1} \big [ {\varvec{s}}_{T - 1} \big ] \nonumber \\&\quad = \sup _{{\varvec{q}}_{T - 1} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ V_{T} \big [ {\varvec{s}}_{T} \big ] \Big \vert {\varvec{s}}_{T - 1} \Big ] \nonumber \\&\quad = \sup _{{\varvec{q}}_{T - 1} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ - \exp \Big \{ - \gamma \Big [ W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{G}_{T} {\overline{\varvec{Q}}}_{T} + {\varvec{H}}_{T}^{\top } {\overline{\varvec{Q}}}_{T}\nonumber \\&\qquad + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{M}_{T} {\varvec{v}}_{T - 1} \Big ] \Big \} \Big \vert {\varvec{s}}_{T - 1} \Big ] \nonumber \\&\quad = \sup _{{\varvec{q}}_{T - 1} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ -\exp \Big \{ - \gamma \Big [ W_{T - 1} - \big \{ {\varvec{P}}_{T - 1} + \big ( \pmb {\varLambda }_{T - 1} {\varvec{q}}_{T - 1} + \pmb {\kappa }_{T - 1} {\varvec{v}}_{T - 1} \big ) \big \}^{\top } {\varvec{q}}_{T - 1} \nonumber \\&\qquad - \big \{ {\varvec{P}}_{T - 1} - ( 1 - \mathrm {e}^{- \rho } ) {\varvec{R}}_{T - 1} + \left( \mathrm {e}^{- \rho } \mathbf{A}_{T - 1} + \mathbf{B}_{T - 1} \right) \left( \pmb {\varLambda }_{T - 1} {\varvec{q}}_{T - 1} + \pmb {\kappa }_{T - 1} {\varvec{v}}_{T - 1} \right) \nonumber \\&\qquad + \pmb {\varepsilon }_{T - 1} \big \}^{\top } \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \nonumber \\&\qquad + \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) ^{\top } \mathbf{G}_{T} \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) + {\varvec{H}}_{T}^{\top } \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \nonumber \\&\qquad + \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) ^{\top } \mathbf{M}_{T} {\varvec{v}}_{T - 1} \Big ] \Big \} \Big \vert {\varvec{s}}_{T - 1} \Big ] \nonumber \\&\quad = \sup _{{\varvec{q}}_{T - 1} \in {\mathbb {R}}^{2}} \Bigg [ - \exp \Big \{ - \gamma \Big [ {\varvec{q}}_{T - 1}^{\top } \left\{ \pmb {\varLambda }_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \right\} - \mathbf{G}_{T} \right\} {\varvec{q}}_{T - 1}\nonumber \\&\qquad + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left\{ \pmb {\varLambda }_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \right\} - 2 \mathbf{G}_{T} \right\} {\varvec{q}}_{T - 1} \nonumber \\&\quad - ( 1 - \mathrm {e}^{-\rho } ) {\varvec{R}}_{T - 1}^{\top } {\varvec{q}}_{T - 1} - {\varvec{H}}_{T - 1}^{\top } {\varvec{q}}_{T - 1} \nonumber \\&\qquad + W_{T - 1} - {\varvec{P}}_{T - 1} {\overline{\varvec{Q}}}_{T - 1} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \mathbf{G}_{T} {\overline{\varvec{Q}}}_{T - 1} + {\varvec{H}}_{T - 1}^{\top } {\overline{\varvec{Q}}}_{T - 1} + ( 1 - \mathrm {e}^{-\rho } ) {\overline{\varvec{Q}}}_{T - 1}^{\top } {\varvec{R}}_{T - 1} \Big ] \Big \} \nonumber \\&\qquad \times {\mathbb {E}} \left[ \exp \Big \{ \gamma \left[ {\varvec{q}}_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T - 1} \right\} \nonumber \right. \right. \\&\left. \left. \qquad + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left( \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right) \right] {\varvec{v}}_{T - 1} \Big \} \Big \vert {\varvec{s}}_{T - 1} \right] \nonumber \\&\qquad \times {\mathbb {E}} \left[ \exp \Big \{ \gamma \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \pmb {\varepsilon }_{T - 1} \Big \} \Big \vert {\varvec{s}}_{T - 1} \right] \Bigg ], \end{aligned}$$
(A.6)

where \(\pmb {\varPi }_{T - 1} := \mathrm {e}^{-\rho } \mathbf{A}_{T - 1} + \mathbf{B}_{T - 1}\). Using the moment generating function, we obtain

  1. 1.

    First expectation in Eq. (A.6):

    $$\begin{aligned}&{\mathbb {E}} \left[ \exp \Big \{ \gamma \left[ {\varvec{q}}_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T - 1} \right\} \nonumber \right. \right. \\&\left. \left. \qquad + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left( \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right) \right] {\varvec{v}}_{T - 1} \Big \} \Big \vert {\varvec{s}}_{T - 1} \right] \nonumber \\&\quad = \exp \Big \{ \gamma \left[ {\varvec{q}}_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1}\nonumber \right. \right. \\&\left. \left. \qquad + \mathbf{M}_{T - 1} \right\} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left( \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right) \right] \left( {\varvec{a}}_{T - 1}^{{\varvec{v}}} + \mathbf{b}_{T - 1}^{{\varvec{v}}} {\varvec{v}}_{T - 2} \right) \nonumber \\&\qquad + \frac{1}{2} \gamma ^{2} \left[ {\varvec{q}}_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T - 1} \right\} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left( \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right) \right] \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \nonumber \\&\qquad \left[ {\varvec{q}}_{T - 1}^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T - 1} \right\} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left( \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right) \right] ^{\top } \Big \}; \end{aligned}$$
    (A.7)
  2. 2.

    Second expectation in Eq. (A.6):

    $$\begin{aligned}&{\mathbb {E}} \left[ \exp \Big \{ \gamma \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \pmb {\varepsilon }_{T - 1} \Big \} \Big \vert {\varvec{s}}_{T - 1} \right] \nonumber \\&\quad = \exp \Big \{ \gamma \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \pmb {\mu }_{T - 1}^{\pmb {\varepsilon }}\nonumber \\&\qquad + \frac{1}{2} \gamma ^{2} \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) ^{\top } \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} \left( {\overline{\varvec{Q}}}_{T - 1} - {\varvec{q}}_{T - 1} \right) \Big \}. \end{aligned}$$
    (A.8)

Therefore, by substituting Eq. (A.7) and (A.8) into Eq. (A.6) and rearranging the terms, we have

$$\begin{aligned}&V_{T - 1} \big [ {\varvec{s}}_{T - 1} \big ] \nonumber \\&\quad = \sup _{{\varvec{q}}_{T - 1} \in {\mathbb {R}}^{2}} - \exp \Big \{ - \gamma \Big [ - {\varvec{q}}_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1} {\varvec{q}}_{T - 1}\nonumber \\&\qquad + \left( {\overline{\varvec{Q}}}_{T - 1}^{\top } \pmb {\varTheta }_{T - 1} + {\varvec{R}}_{T - 1}^{\top } \pmb {\varXi }_{T - 1} + {\varvec{v}}_{T - 2}^{\top } \pmb {\varPhi }_{T - 1} + \pmb {\varPsi }_{T - 1}^{\top } \right) {\varvec{q}}_{T - 1} \nonumber \\&\qquad + W_{T - 1} - {\varvec{P}}_{T - 1}^{\top } {\overline{\varvec{Q}}}_{T - 1}\nonumber \\&\qquad + {\overline{\varvec{Q}}}_{T - 1}^{\top } \left\{ \mathbf{G}_{T}\nonumber \right. \\&\left. \qquad - \frac{1}{2} \gamma \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top } - \frac{1}{2} \gamma \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} \right\} {\overline{\varvec{Q}}}_{T - 1} \nonumber \\&\qquad + \left\{ {\varvec{H}}_{T}^{\top } - \left( {\varvec{a}}_{T - 1}^{\mathbf{v}} \right) ^{\top } \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top }\nonumber \right. \\&\left. \qquad - \left( \pmb {\mu }_{T - 1}^{\pmb {\varepsilon }} \right) ^{\top } \right\} {\overline{\varvec{Q}}}_{T - 1} + ( 1 - \mathrm {e}^{- \rho } ) {\overline{\varvec{Q}}}_{T - 1}^{\top } {\varvec{R}}_{T - 1} \nonumber \\&\qquad - {\overline{\varvec{Q}}}_{T - 1}^{\top } \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \mathbf{b}_{T - 1}^{{\varvec{v}}} {\varvec{v}}_{T - 2} \Big ] \Big \}, \end{aligned}$$
(A.9)

with the following relations:

$$\begin{aligned} \pmb {\tilde{\varOmega }}_{T - 1}&:= \frac{1}{2} \left( \pmb {\varOmega }_{T - 1} + \pmb {\varOmega }_{T - 1}^{\top } \right) \nonumber \\&= \frac{1}{2} \pmb {\varLambda }_{T - 1} \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \right\} + \frac{1}{2} \left\{ \pmb {\varLambda }_{T - 1} \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \right\} \right\} ^{\top } - \mathbf{G}_{T} \nonumber \\&\quad + \frac{1}{2} \gamma \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T} \right\} \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T} \right\} ^{\top }\nonumber \\&\quad + \frac{1}{2} \gamma \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varTheta }_{T - 1}&:= - \pmb {\varPi }_{T - 1} \pmb {\varLambda }_{T - 1} - 2 \mathbf{G}_{T}\nonumber \\&\quad - \gamma \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T} \right\} ^{\top } \nonumber \\&\quad + \gamma \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varXi }_{T - 1}&:= - ( 1 - \mathrm {e}^{-\rho } ) \mathbf{I}_{2} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPhi }_{T - 1}&:= - \left( \mathbf{b}_{T - 1}^{{\varvec{v}}} \right) ^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T} \right\} ^{\top } \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPsi }_{T - 1}^{\top }&:= - {\varvec{H}}_{T}^{\top } - \left( {\varvec{a}}_{T - 1}^{{\varvec{v}}} \right) ^{\top } \left\{ \left( \mathbf{I}_{2} - \pmb {\varPi }_{T - 1} \right) \pmb {\kappa }_{T - 1} + \mathbf{M}_{T} \right\} ^{\top } + \left( \pmb {\mu }_{T - 1}^{\pmb {\varepsilon }} \right) ^{\top } \ ( \in {\mathbb {R}}^{1 \times 2} ). \end{aligned}$$
(A.10)

By the assumption 2.1, \(\pmb {\tilde{\varOmega }}_{T - 1}\) becomes a (symmetric and) positive definite matrix. Finding the optimal execution volume \({\varvec{q}}_{T - 1}^{*}\) which attains the supremum of Eq. (A.6) is equivalent to finding the one which yields the maximum of the following function \(K_{T - 1} ( {\varvec{q}}_{T - 1} )\) defined as

$$\begin{aligned}&K_{T - 1} ( {\varvec{q}}_{T - 1} ) := - {\varvec{q}}_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1} {\varvec{q}}_{T - 1}\nonumber \\&\quad + \left( {\overline{\varvec{Q}}}_{T - 1}^{\top } \pmb {\varTheta }_{T - 1} + {\varvec{R}}_{T - 1}^{\top } \pmb {\varXi }_{T - 1} + {\varvec{v}}_{T - 2}^{\top } \pmb {\varPhi }_{T - 1} + \pmb {\varPsi }_{T - 1}^{\top } \right) {\varvec{q}}_{T - 1} \nonumber \\&\quad + W_{T - 1} - {\varvec{P}}_{T - 1} {\overline{\varvec{Q}}}_{T - 1} + {\overline{\varvec{Q}}}_{T - 1} \left\{ \mathbf{G}_{T}\nonumber \right. \\&\left. \quad - \frac{1}{2} \gamma \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top }\nonumber \right. \\&\left. \quad - \frac{1}{2} \gamma \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} \right\} {\overline{\varvec{Q}}}_{T - 1} \nonumber \\&\quad + \left\{ {\varvec{H}}_{T}^{\top } - \left( {\varvec{a}}_{T - 1}^{{\varvec{v}}} \right) ^{\top } \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top } - \left( \pmb {\mu }_{T - 1}^{\pmb {\varepsilon }} \right) ^{\top } \right\} {\overline{\varvec{Q}}}_{T - 1} + ( 1 - \mathrm {e}^{- \rho } ) {\overline{\varvec{Q}}}_{T - 1} {\varvec{R}}_{T - 1} \nonumber \\&\quad + {\overline{\varvec{Q}}}_{T - 1} \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \mathbf{b}_{T - 1}^{{\varvec{v}}} {\varvec{v}}_{T - 2}, \end{aligned}$$
(A.11)

since both Eq. (A.6) and Eq. (A.11) are concave functions with respect to \({\varvec{q}}_{T - 1}\). Thus, by completing the square of \(K_{T - 1}\), we obtain the optimal execution volume \(\mathbf{q}_{T - 1}^{*}\) as

$$\begin{aligned} {\varvec{q}}_{T - 1}^{*}&= \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \left\{ \pmb {\varTheta }_{T - 1}^{\top } {\overline{\varvec{Q}}}_{T - 1} + \pmb {\varXi }_{T - 1}^{\top } {\varvec{R}}_{T - 1} + \pmb {\varPhi }_{T - 1}^{\top } {\varvec{v}}_{T - 2} + \pmb {\varPsi }_{T - 1} \right\} \nonumber \\&\left( =: {\varvec{a}}_{T - 1} + \mathbf{b}_{T - 1} {\overline{\varvec{Q}}}_{T - 1} + \mathbf{c}_{T - 1} {\varvec{R}}_{T - 1} + \mathbf{d}_{T - 1} {\varvec{v}}_{T - 2} \right) . \end{aligned}$$
(A.12)

Thus, the optimal value function at time \(T - 1\) becomes a functional form as follows:

$$\begin{aligned}&V_{T - 1} \big [ {\varvec{s}}_{T - 1} \big ] \nonumber \\&\quad = - \exp \Big \{ - \gamma \Big [ W_{T - 1} - {\varvec{P}}_{T - 1}^{\top } {\overline{\varvec{Q}}}_{T - 1} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \mathbf{G}_{T - 1} {\overline{\varvec{Q}}}_{T - 1}\nonumber \\&\qquad + {\varvec{H}}_{T - 1}^{\top } {\overline{\varvec{Q}}}_{T - 1} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \mathbf{I}_{T - 1} {\varvec{R}}_{T - 1} + {\varvec{R}}_{T - 1}^{\top } \mathbf{J}_{T - 1} {\varvec{R}}_{T - 1} \nonumber \\&\qquad + {\varvec{L}}_{T - 1}^{\top } {\varvec{R}}_{T - 1} + {\overline{\varvec{Q}}}_{T - 1}^{\top } \mathbf{M}_{T - 1} {\varvec{v}}_{T - 2} + {\varvec{R}}_{T - 1}^{\top } \mathbf{N}_{T - 1} {\varvec{v}}_{T - 2}\nonumber \\&\qquad + {\varvec{v}}_{T - 2}^{\top } \mathbf{X}_{T - 1} {\varvec{v}}_{T - 2} + {\varvec{Y}}_{T - 1}^{\top } {\varvec{v}}_{T - 2} + Z_{T - 1} \Big ] \Big \}, \end{aligned}$$
(A.13)

where

$$\begin{aligned} \mathbf{G}_{T - 1}&:= \mathbf{G}_{T} - \frac{1}{2} \gamma \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \pmb {\varSigma }_{T - 1}^{{\varvec{v}}} \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top }\nonumber \\&\quad - \frac{1}{2} \gamma \pmb {\varSigma }_{T - 1}^{\pmb {\varepsilon }} + \frac{1}{4} \pmb {\varTheta }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varTheta }_{T - 1}^{\top }; \nonumber \\ {\varvec{H}}_{T - 1}^{\top }&:= {\varvec{H}}_{T}^{\top } - \left( {\varvec{a}}_{T - 1}^{{\varvec{v}}} \right) ^{\top } \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} ^{\top } - \left( \pmb {\mu }_{T - 1}^{\pmb {\varepsilon }} \right) ^{\top } + \frac{1}{2} \pmb {\varPsi }_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varTheta }_{T - 1}^{\top }; \nonumber \\ \mathbf{I}_{T - 1}&:= ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} + \frac{1}{2} \pmb {\varTheta }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varXi }_{T - 1}^{\top }; \quad \mathbf{J}_{T - 1}\nonumber \\&:= \frac{1}{4} \pmb {\varXi }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varXi }_{T - 1}^{\top }; \quad {\varvec{L}}_{T - 1}^{\top } := \frac{1}{2} \pmb {\varPsi }_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varXi }_{T - 1}^{\top }; \nonumber \\ \mathbf{M}_{T - 1}&:= \left\{ \pmb {\varPi }_{T - 1} \pmb {\kappa }_{T - 1} - \mathbf{M}_{T} \right\} \mathbf{b}_{T - 1}^{{\varvec{v}}} + \frac{1}{2} \pmb {\varTheta }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varPhi }_{T - 1}^{\top }; \quad \mathbf{N}_{T - 1}\nonumber \\&:= \frac{1}{2} \pmb {\varXi }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varPhi }_{T - 1}^{\top }; \nonumber \\ \mathbf{X}_{T - 1}&:= \frac{1}{4} \pmb {\varPhi }_{T - 1} \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varPhi }_{T - 1}^{\top }; \quad {\varvec{Y}}_{T - 1}^{\top } := \frac{1}{2} \pmb {\varPsi }_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varPhi }_{T - 1}^{\top }; \quad \nonumber \\ Z_{T - 1}&:= \frac{1}{4} \pmb {\varPsi }_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T - 1}^{-1} \pmb {\varPsi }_{T - 1}. \end{aligned}$$
(A.14)
Step 3:

For \(t \in \{ { T - 2, \ldots , 2 } \}\), we can assume from the above results that, at time \(t + 1\), the optimal value function has the following functional form:

$$\begin{aligned}&V_{t + 1} \big [ {\varvec{s}}_{t + 1} \big ] \nonumber \\&\quad = - \exp \Big \{ - \gamma \Big [ W_{t + 1} - {\varvec{P}}_{t + 1}^{\top } {\overline{\varvec{Q}}}_{t + 1} + {\overline{\varvec{Q}}}_{t + 1}^{\top } \mathbf{G}_{t + 1} {\overline{\varvec{Q}}}_{t + 1} + {\varvec{H}}_{t + 1}^{\top } {\overline{\varvec{Q}}}_{t + 1}\nonumber \\&\qquad + {\overline{\varvec{Q}}}_{t + 1}^{\top } \mathbf{I}_{t + 1} {\varvec{R}}_{t + 1} + {\varvec{R}}_{t + 1}^{\top } \mathbf{J}_{t + 1} {\varvec{R}}_{t + 1} \nonumber \\&\qquad + {\varvec{L}}_{t + 1}^{\top } {\varvec{R}}_{t + 1} + {\overline{\varvec{Q}}}_{t + 1}^{\top } \mathbf{M}_{t + 1} {\varvec{v}}_{t} + {\varvec{R}}_{t + 1}^{\top } \mathbf{N}_{t + 1} {\varvec{v}}_{t} + {\varvec{v}}_{t}^{\top } \mathbf{X}_{t + 1} {\varvec{v}}_{t} + {\varvec{Y}}_{t + 1}^{\top } {\varvec{v}}_{t} + Z_{t + 1} \Big ] \Big \}. \end{aligned}$$
(A.15)

Then, we can obtain the following calculation by substituting the dynamics of \(W_{t + 1}, {\varvec{P}}_{t + 1}, {\overline{\varvec{Q}}}_{t + 1}, {\varvec{R}}_{ t + 1}, {\varvec{v}}_{t}\) into the equation above:

$$\begin{aligned} V_{t} \big [ {\varvec{s}}_{t} \big ]&= \sup _{{\varvec{q}}_{t} \in {\mathbb {R}}^{2}} - \exp \Big \{ - \gamma \Big [ {\varvec{q}}_{t}^{\top } \left( - \pmb {\varLambda }_{t} + \pmb {\varPi }_{t} \pmb {\varLambda }_{t} + \mathbf{G}_{t + 1}\nonumber \right. \\&\left. \quad - \mathrm {e}^{- \rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} + \mathrm {e}^{- 2 \rho } \pmb {\varLambda }_{t}^{\top } \mathbf{A}_{t}^{\top } \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} \right) {\varvec{q}}_{t} \nonumber \\&\quad + \Big [ {\overline{\varvec{Q}}}_{t}^{\top } \left( - \pmb {\varPi }_{t} \pmb {\varLambda }_{t} - 2 \mathbf{G}_{t + 1} + \mathrm {e}^{- \rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} \right) \nonumber \\&\quad + {\varvec{R}}_{t}^{\top } \left( - ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} - \mathrm {e}^{- \rho } \mathbf{I}_{t + 1} + 2 \mathrm {e}^{- 2 \rho } \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} \right) \nonumber \\&\quad + \left( - {\varvec{H}}_{t + 1}^{\top } + \mathrm {e}^{- \rho } {\varvec{L}}_{t + 1}^{\top } \mathbf{A}_{t} \pmb {\varLambda }_{t} \right) \Big ] {\varvec{q}}_{t} + W_{t} - {\varvec{P}}_{t}^{\top } {\overline{\varvec{Q}}}_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \mathbf{G}_{t + 1} {\overline{\varvec{Q}}}_{t} + {\varvec{H}}_{t + 1}^{\top } {\overline{\varvec{Q}}}_{t} \nonumber \\&\quad + {\overline{\varvec{Q}}}_{t}^{\top } \left( ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} + \mathrm {e}^{- \rho } \mathbf{I}_{t} \right) {\varvec{R}}_{t} + \mathrm {e}^{- 2 \rho } {\varvec{R}}_{t}^{\top } \mathbf{J}_{t + 1} {\varvec{R}}_{t} + \mathrm {e}^{- \rho } {\varvec{L}}_{t + 1}^{\top } {\varvec{R}}_{t} + Z_{t + 1} \Big ] \Big \} \nonumber \\&\quad \times {\mathbb {E}} \left[ \exp \Big \{ - \gamma \left[ {\varvec{v}}_{t}^{\top } \pmb {\xi }_{t} {\varvec{v}}_{t} + \left( {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t} \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right) {\varvec{v}}_{t} \right] \Big \} \Big \vert {\varvec{s}}_{t} \right] \nonumber \\&\quad \times {\mathbb {E}} \left[ \exp \Big \{ \gamma \left( {\overline{\varvec{Q}}}_{t} - {\varvec{q}}_{t} \right) ^{\top } \pmb {\varepsilon }_{t} \Big \} \Big \vert {\varvec{s}}_{t} \right] , \end{aligned}$$
(A.16)

where \(\pmb {\varPi }_{t} := \mathrm {e}^{-\rho } \mathbf{A}_{t} + \mathbf{B}_{t}\) and

$$\begin{aligned} \pmb {\xi }_{t}&:= \mathrm {e}^{-2\rho } \pmb {\kappa }_{t}^{\top } \mathbf{A}_{t} \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\kappa }_{t} + \mathrm {e}^{-\rho } \pmb {\kappa }_{t} \mathbf{A}_{t} \mathbf{N}_{t + 1} + \mathbf{X}_{t + 1} \ (\in {\mathbb {R}}^{2 \times 2}); \\ \pmb {\delta }_{t}&:= - \left( \mathbf{I}_{2} - \pmb {\varPi }_{t} \right) \pmb {\kappa }_{t} - \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\kappa }_{t}\nonumber \\&\quad + 2 \mathrm {e}^{-2\rho } \pmb {\varLambda }_{t} \mathbf{A}_{t} \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\kappa }_{t} - \mathbf{M}_{t + 1} + \mathrm {e}^{-\rho } \pmb {\varLambda }_{t} \mathbf{A}_{t} \mathbf{N}_{t + 1} \ (\in {\mathbb {R}}^{2 \times 2}); \\ \pmb {\eta }_{t}&:= - \pmb {\varPi }_{t} \pmb {\kappa }_{t} + \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\kappa }_{t} + \mathbf{M}_{t + 1} \ (\in {\mathbb {R}}^{2 \times 2}); \\ \pmb {\theta }_{t}&:= 2 \mathrm {e}^{-2\rho } \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\kappa }_{t} + \mathrm {e}^{-\rho } \mathbf{N}_{t + 1} \ (\in {\mathbb {R}}^{2 \times 2}); \\ \pmb {\phi }_{t}^{\top }&:= \mathrm {e}^{-\rho } {\varvec{L}}_{t + 1}^{\top } \mathbf{A}_{t} \pmb {\kappa }_{t} + {\varvec{Y}}_{t + 1}^{\top } \ (\in {\mathbb {R}}^{1 \times 2}). \end{aligned}$$

The direct calculation leads to the following equations:

  1. 1.

    First expectation in Eq. (A.16):

    $$\begin{aligned}&{\mathbb {E}} \left[ \exp \Big \{ - \gamma \left[ {\varvec{v}}_{t}^{\top } \pmb {\xi }_{t} {\varvec{v}}_{t} + \left( {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t} \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right) {\varvec{v}}_{t} \right] \Big \} \Big \vert {\varvec{s}}_{t} \right] \nonumber \\&\quad = \frac{\left|\left( \pmb {\varSigma }_{t}^{*} \right) \right|}{\left|\pmb {\varSigma }_{t}^{{\varvec{v}}} \right|} \exp \Big \{ \frac{1}{2} \Big [ \left( {\varvec{a}}_{t}^{{\varvec{v}}} + \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1} \right) ^{\top } \left\{ \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1}\nonumber \right. \\&\left. \qquad - \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \right\} \left( {\varvec{a}}_{t}^{{\varvec{v}}} + \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1} \right) \nonumber \\&\quad - 2 \gamma \left[ {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right] \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} ( \pmb {\varSigma }_{t}^{{\varvec{v}}} )^{-1} \left( {\varvec{a}}_{t}^{{\varvec{v}}} + \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1} \right) \nonumber \\&\quad + \gamma ^{2} \left[ {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right] \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \left[ {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right] ^{\top } \Big ] \Big \}; \end{aligned}$$
    (A.17)
  2. 2.

    Second expectation in Eq. (A.16):

    $$\begin{aligned}&{\mathbb {E}} \left[ \exp \Big \{ \gamma \left( \mathbf{{\overline{Q}}}_{t} - \mathbf{q}_{t} \right) \pmb {\varepsilon }_{t} \Big \} \Big \vert s_{t} \right] \nonumber \\&\quad = \exp \Big \{ \gamma \left( {\overline{\varvec{Q}}}_{t} - {\varvec{q}}_{t} \right) \pmb {\mu }_{t}^{\pmb {\varepsilon }} + \frac{1}{2} \gamma ^{2} \left( {\overline{\varvec{Q}}}_{t} - {\varvec{q}}_{t} \right) ^{\top } \pmb {\varSigma }_{t}^{\pmb {\varepsilon }} \left( {\overline{\varvec{Q}}}_{t} - {\varvec{q}}_{t} \right) \Big \}. \end{aligned}$$
    (A.18)

To derive Eq. (A.17), the following lemma has been used. Although this lemma is a straightforward result, we here note the result as a lemma for this paper to be self–contained.

Lemma 1

For an ndimensional normally distributed random variable \({\varvec{X}}\) with mean \(\pmb {\mu } \in {\mathbb {R}}^{n}\) and variance \(\pmb {\varSigma } \in {\mathbb {R}}^{n \times n}\) (where \(\pmb {\varSigma }\) is a symmetric positive definite matrix), we have

$$\begin{aligned}&{\mathbb {E}} \Big [ \exp \Big \{ {\varvec{s}}^{\top } {\varvec{X}} + {\varvec{X}}^{\top } \mathbf{V} {\varvec{X}} \Big \} \Big ]\nonumber \\&\quad = \frac{|\left( \pmb {\varSigma }^{*} \right) ^{-1} |^{\frac{1}{2}}}{|\pmb {\varSigma } |^{\frac{1}{2}}} \exp \left\{ \frac{1}{2} \left[ \left( \pmb {\mu }^{*} \right) ^{\top } \pmb {\varSigma }^{-1} \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu }^{*} - \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} , \end{aligned}$$
(A.19)

where \({\varvec{s}} \in {\mathbb {R}}^{n}\), \(\mathbf{V} \in {\mathbb {R}}^{n \times n}\), \(\pmb {\mu }^{*} := \pmb {\mu } + \pmb {\varSigma } {\varvec{s}}\) and \(\pmb {\varSigma }^{*} := \pmb {\varSigma }^{-1} - 2 \mathbf{V}\), under the assumption that \(\pmb {\varSigma }^{*}\) is a non–singular matrix. Remind that when \(\mathbf{V} = \mathbf{0}\), the result is consistent with the one obtained from the moment generating function.

Proof

We can assume, without loss of generality, that \(\mathbf{V}\) is symmetric, since \({\varvec{X}}^{\top } \mathbf{V} {\varvec{X}} \in {\mathbb {R}}\) we have a symmetric matrix \({\tilde{\mathbf {V}}} (:= \frac{\mathbf{V} + \mathbf{V}^{\top }}{2})\) which satisfies \({\varvec{X}}^{\top } \mathbf{\tilde{V}} {\varvec{X}} = {\varvec{X}}^{\top } \mathbf{V} {\varvec{X}}\) even if \(\mathbf{V}\) is not symmetric. Define \({\varvec{x}} := ( x_{1}, \ldots , x_{n} )^{\top } \in {\mathbb {R}}^{n}\). Then, direct calculation yields

$$\begin{aligned}&{\mathbb {E}} \Big [ \exp \Big \{ {\varvec{s}}^{\top } {\varvec{X}} + {\varvec{X}}^{\top } \mathbf{V} {\varvec{X}} \Big \} \Big ] \nonumber \\&\quad = \frac{1}{\left( 2 \pi \right) ^{\frac{n}{2}} |\pmb {\varSigma } |^{\frac{1}{2}}} \int _{{\mathbb {R}}^{n}}^{} \exp \left\{ - \frac{1}{2} \left[ {\varvec{x}}^{\top } \left( \pmb {\varSigma }^{-1} - 2 \mathbf{V} \right) {\varvec{x}}\nonumber \right. \right. \\&\left. \left. \qquad - 2 \left( \pmb {\mu } + \pmb {\varSigma } {\varvec{s}} \right) ^{\top } \pmb {\varSigma }^{-1} {\varvec{x}} + \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} \mathrm {d}{\varvec{x}}, \end{aligned}$$
(A.20)

where \(\mathrm {d}{\varvec{x}} := \mathrm {d}x_{1} \cdots \mathrm {d}x_{n}\). If we set \(\pmb {\varSigma }^{*} := \pmb {\varSigma }^{-1} - 2 \mathbf{V}\) and \(\pmb {\mu }^{*} := \pmb {\mu } + \pmb {\varSigma } {\varvec{s}}\), then by the assumption that \(\pmb {\varSigma }^{*} \in {\mathbb {R}}^{n \times n}\) is a non–singular matrix, Eq. (A.20) results in

$$\begin{aligned}&{\mathbb {E}} \Big [ \exp \Big \{ {\varvec{s}}^{\top } {\varvec{X}} + {\varvec{X}}^{\top } \mathbf{V} {\varvec{X}} \Big \} \Big ] \nonumber \\&\quad = \frac{1}{\left( 2 \pi \right) ^{\frac{n}{2}} |\pmb {\varSigma } |^{\frac{1}{2}}} \int _{{\mathbb {R}}^{n}}^{} \exp \left\{ - \frac{1}{2} \left[ {\varvec{x}}^{\top } \pmb {\varSigma }^{*} {\varvec{x}} - 2 \left( \pmb {\mu }^{*} \right) ^{\top } \pmb {\varSigma }^{-1} {\varvec{x}} + \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} \mathrm {d}{\varvec{x}} \nonumber \\&\quad = \frac{\left( 2 \pi \right) ^{\frac{n}{2}} |\left( \pmb {\varSigma }^{*} \right) ^{-1} |^{\frac{1}{2}}}{\left( 2 \pi \right) ^{\frac{n}{2}} |\pmb {\varSigma } |^{\frac{1}{2}}} \exp \left\{ \frac{1}{2} \left[ \left( \pmb {\mu }^{*} \right) ^{\top } \pmb {\varSigma }^{-1} \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu }^{*} - \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} \nonumber \\&\qquad \times \underbrace{\int _{{\mathbb {R}}^{n}}^{} \frac{1}{\left( 2 \pi \right) ^{\frac{n}{2}} |\left( \pmb {\varSigma }^{*} \right) ^{-1} |^{\frac{1}{2}}} \exp \left\{ - \frac{1}{2} \left( {\varvec{x}}^{\top } - \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu } \right) \left\{ \left( \pmb {\varSigma }^{*} \right) ^{-1} \right\} ^{-1} \left( {\varvec{x}}^{\top } - \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu } \right) \right\} \mathrm {d}{\varvec{x}}}_{= 1} \nonumber \\&\quad = \frac{|\left( \pmb {\varSigma }^{*} \right) ^{-1} |^{\frac{1}{2}}}{|\pmb {\varSigma } |^{\frac{1}{2}}} \exp \left\{ \frac{1}{2} \left[ \left( \pmb {\mu }^{*} \right) ^{\top } \pmb {\varSigma }^{-1} \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu }^{*} - \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} . \end{aligned}$$
(A.21)

\(\square \)

Eq. (A.21) can be rewritten as follows:

$$\begin{aligned}&\frac{|\left( \pmb {\varSigma }^{*} \right) ^{-1} |^{\frac{1}{2}}}{|\pmb {\varSigma } |^{\frac{1}{2}}} \exp \left\{ \frac{1}{2} \left[ \left( \pmb {\mu }^{*} \right) ^{\top } \pmb {\varSigma }^{-1} \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} \pmb {\mu }^{*} - \pmb {\mu }^{\top } \pmb {\varSigma }^{-1} \pmb {\mu } \right] \right\} \nonumber \\&\quad = \frac{\left|\left( \pmb {\varSigma }^{*} \right) ^{-1} \right|}{\left|\pmb {\varSigma } \right|} \exp \left\{ \frac{1}{2} \left[ \pmb {\mu }^{\top } \left\{ \pmb {\varSigma } \left( \pmb {\varSigma }^{*} \right) ^{-1} \pmb {\varSigma }^{-1} - \pmb {\varSigma }^{-1} \right\} \pmb {\mu }\nonumber \right. \right. \\&\left. \left. \quad + 2 {\varvec{s}}^{\top } \left( \pmb {\varSigma }^{*} \right) ^{-1} ( \pmb {\varSigma } )^{-1} \pmb {\mu } + {\varvec{s}}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} {\varvec{s}} \right] \right\} . \end{aligned}$$
(A.22)

Therefore, setting \({\varvec{s}}^{\top } := - \gamma \left[ {\varvec{q}}_{t}^{\top } \pmb {\delta }_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\eta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} + \pmb {\phi }_{t}^{\top } \right] \) and \(\mathbf{V} := - \frac{\gamma }{2} \left( \pmb {\xi }_{t} + \pmb {\xi }_{t}^{\top } \right) \) in Eq. (A.21) yields Eq. (A.17).

Substituting Eq. (A.17) and (A.18) into Eq. (A.16) and rearranging results in

$$\begin{aligned}&V_{t} \big [ {\varvec{s}}_{t} \big ]\nonumber \\&\quad = \sup _{{\varvec{q}}_{t} \in {\mathbb {R}}^{2}} - \exp \Big \{ - \gamma \Big [- {\varvec{q}}_{t}^{\top } \pmb {\tilde{\varOmega }}_{t} {\varvec{q}}_{t}\nonumber \\&\qquad + \Big [ {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\varTheta }_{t} + {\varvec{R}}_{t}^{\top } \pmb {\varXi }_{t} + {\varvec{v}}_{t - 1}^{\top } \pmb {\varPhi }_{t} + \pmb {\varPsi }_{t}^{\top } \Big ] {\varvec{q}}_{t} + W_{t} - {\varvec{P}}_{t}^{\top } {\overline{\varvec{Q}}}_{t} \nonumber \\&\qquad + {\overline{\varvec{Q}}}_{t}^{\top } \Big [ \mathbf{G}_{t + 1} - \frac{1}{2} \gamma \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } - \frac{1}{2} \gamma \pmb {\varSigma }_{t}^{\pmb {\varepsilon }} \Big ] {\overline{\varvec{Q}}}_{t} + \Big [ {\varvec{H}}_{t + 1}^{\top } + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } \nonumber \\&\qquad - \gamma \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } - \left( \pmb {\mu }_{t}^{\pmb {\varepsilon }} \right) ^{\top } \Big ] {\overline{\varvec{Q}}}_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \Big [ ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} + \mathrm {e}^{- \rho } \mathbf{I}_{t} - \gamma \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } \Big ] {\varvec{R}}_{t} \nonumber \\&\qquad + {\varvec{R}}_{t}^{\top } \Big [ \mathrm {e}^{- 2 \rho } \mathbf{J}_{t + 1} - \frac{1}{2} \gamma \pmb {\theta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } \Big ] {\varvec{R}}_{t}\nonumber \\&\qquad + \Big [ \mathrm {e}^{- \rho } {\varvec{L}}_{t + 1}^{\top } + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } - \gamma \left( \pmb {\phi }_{t} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } \Big ] {\varvec{R}}_{t} \nonumber \\&\qquad + {\overline{\varvec{Q}}}_{t}^{\top } \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1} +{\varvec{R}}_{t}^{\top } \pmb {\theta }_{t} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1}\nonumber \\&\quad - \frac{1}{2 \gamma } {\varvec{v}}_{t - 1}^{\top } \left( \mathbf{b}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} \mathbf{b}_{t}^{{\varvec{v}}} {\varvec{v}}_{t - 1} \nonumber \\&\qquad + \Big [ - \frac{1}{\gamma } \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} \mathbf{b}_{t}^{{\varvec{v}}} + \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} \Big ] {\varvec{v}}_{t - 1} + Z_{t + 1} - \frac{1}{2 \gamma } \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} {\varvec{a}}_{t}^{{\varvec{v}}} \nonumber \\&\qquad + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\phi }_{t} - \frac{1}{2 \gamma } \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\phi }_{t} + x_{t} \Big ] \Big \}, \end{aligned}$$
(A.23)

where \(\pmb {\varSigma }_{t}^{*} := \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} + \gamma \left( \pmb {\xi }_{t} + \pmb {\xi }_{t}^{\top } \right) \), \(\pmb {\varSigma }_{t}^{**} := \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} - \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1}\), \(\displaystyle {x_{t} := \log \frac{\left|\left( \pmb {\varSigma }_{t}^{*} \right) \right|}{\left|\pmb {\varSigma }_{t}^{{\varvec{v}}} \right|}}\), and

$$\begin{aligned} \pmb {\tilde{\varOmega }}_{t}&:= \frac{1}{2} \left( \pmb {\varOmega }_{t} + \pmb {\varOmega }_{t}^{\top } \right) \nonumber \\&= \frac{1}{2} \pmb {\varLambda }_{t} \left( \mathbf{I}_{2} - \pmb {\varPi }_{t} \right) + \frac{1}{2} \left\{ \pmb {\varLambda }_{t} \left( \mathbf{I}_{2} - \pmb {\varPi }_{t} \right) \right\} ^{\top } - \mathbf{G}_{t + 1} + \frac{1}{2} \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} + \frac{1}{2} \left\{ \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} \right\} ^{\top } \nonumber \\&\quad - \mathrm {e}^{-2\rho } \pmb {\varLambda }_{t} \mathbf{A}_{t} \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} + \frac{1}{2} \gamma \pmb {\delta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top } + \frac{1}{2} \gamma \pmb {\varSigma }_{t}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varTheta }_{t}&:= - \pmb {\varPi }_{t} \pmb {\varLambda }_{t} - 2 \mathbf{G}_{t + 1} + \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} - \gamma \pmb {\eta }_{t}\left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top } + \gamma \pmb {\varSigma }_{t}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varXi }_{t}&:= - ( 1 - \mathrm {e}^{-\rho } ) \mathbf{I}_{2} - \mathrm {e}^{-\rho } \mathbf{I}_{t + 1} + 2 \mathrm {e}^{- 2\rho } \mathbf{J}_{t + 1} \mathbf{A}_{t} \pmb {\varLambda }_{t} - \gamma \pmb {\theta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top } \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPhi }_{t}&:= \left( \mathbf{b}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top } \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPsi }_{t}^{\top }&:= - {\varvec{H}}_{t + 1}^{\top } + \mathrm {e}^{-\rho } {\varvec{L}}_{t + 1}^{\top } \mathbf{A}_{t} \pmb {\varLambda }_{t} + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top }\nonumber \\&\quad - \gamma \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\delta }_{t}^{\top } + \left( \pmb {\mu }_{t}^{\pmb {\varepsilon }} \right) ^{\top } \ ( \in {\mathbb {R}}^{1 \times 2} ). \end{aligned}$$
(A.24)

Thus, under the following assumptions (or regularity conditions):

  1. 1.

    \(\pmb {\varSigma }_{t}^{*} := \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} + \gamma \left( \pmb {\xi }_{t} + \pmb {\xi }_{t}^{\top } \right) \) is non-singular;

  2. 2.

    \(\pmb {\tilde{\varOmega }}_{t} := \frac{1}{2} \left( \pmb {\varOmega }_{t} + \pmb {\varOmega }_{t}^{\top } \right) \) is positive (semi)definite,

we can derive the optimal execution volume at time t via the same method used in step 2 and obtain as follows:

$$\begin{aligned} {\varvec{q}}_{t}^{*}&= \pmb {\tilde{\varOmega }}_{t}^{-1} \left\{ \pmb {\varTheta }_{t}^{\top } {\overline{\varvec{Q}}}_{t} + \pmb {\varXi }_{t}^{\top } {\varvec{R}}_{t} + \pmb {\varPhi }_{t}^{\top } {\varvec{v}}_{t - 1} + \pmb {\varPsi }_{t} \right\} \nonumber \\&\quad \left( =: {\varvec{a}}_{t} + \mathbf{b}_{t} {\overline{\varvec{Q}}}_{t} + \mathbf{c}_{t} {\varvec{R}}_{t} + \mathbf{d}_{t} {\varvec{v}}_{t - 1} \right) . \end{aligned}$$
(A.25)

Finally, by substituting this into Eq. (A.23) the optimal value function becomes

$$\begin{aligned} V_{t} \big [ {\varvec{s}}_{t} \big ]&= - \exp \Big \{ - \gamma \Big [ W_{t} - {\varvec{P}}_{t}^{\top } {\overline{\varvec{Q}}}_{t} + {\overline{\varvec{Q}}}_{t}^{\top } \mathbf{G}_{t} {\overline{\varvec{Q}}}_{t} + {\varvec{H}}_{t}^{\top } {\overline{\varvec{Q}}}_{t}\nonumber \\&\quad + {\overline{\varvec{Q}}}_{t}^{\top } \mathbf{I}_{t} {\varvec{R}}_{t} + {\varvec{R}}_{t}^{\top } \mathbf{J}_{t} {\varvec{R}}_{t} + {\varvec{L}}_{t}^{\top } {\varvec{R}}_{t} \nonumber \\&\quad + {\overline{\varvec{Q}}}_{t}^{\top } \mathbf{M}_{t} {\varvec{v}}_{t - 1} + {\varvec{R}}_{t}^{\top } \mathbf{N}_{t} {\varvec{v}}_{t - 1} + {\varvec{v}}_{t - 1}^{\top } \mathbf{X}_{t} {\varvec{v}}_{t - 1} + {\varvec{Y}}_{t}^{\top } {\varvec{v}}_{t - 1} + Z_{t} \Big ] \Big \}, \end{aligned}$$
(A.26)

where

$$\begin{aligned} \mathbf{G}_{t}&:= \mathbf{G}_{t + 1} - \frac{1}{2} \gamma \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } - \frac{1}{2} \gamma \pmb {\varSigma }_{t}^{\pmb {\varepsilon }} + \frac{1}{4} \pmb {\varTheta }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varTheta }_{t}^{\top }; \nonumber \\ {\varvec{H}}_{t}^{\top }&:= {\varvec{H}}_{t + 1}^{\top } + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } - \gamma \pmb {\varphi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\eta }_{t}^{\top } - \left( \pmb {\mu }_{t}^{\pmb {\varepsilon }} \right) ^{\top }\nonumber \\&\quad + \frac{1}{2} \pmb {\varPsi }_{t}^{\top } \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varTheta }_{t}^{\top }; \nonumber \\ \mathbf{I}_{t}&:= ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} + \mathrm {e}^{- \rho } \mathbf{I}_{t + 1} - \gamma \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } + \frac{1}{2} \pmb {\varTheta }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varXi }_{t}^{\top }; \nonumber \\ \mathbf{J}_{t}&:= \mathrm {e}^{- 2 \rho } \mathbf{J}_{t + 1} - \frac{1}{2} \gamma \pmb {\theta }_{t} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } + \frac{1}{4} \pmb {\varXi }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varXi }_{t}^{\top }; \nonumber \\ {\varvec{L}}_{t}^{\top }&:= \mathrm {e}^{- \rho } {\varvec{L}}_{t + 1}^{\top } + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top } - \gamma \left( \pmb {\phi }_{t} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\theta }_{t}^{\top }\nonumber \\&\quad + \frac{1}{2} \pmb {\varPsi }_{t}^{\top } \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varXi }_{t}^{\top }; \nonumber \\ \mathbf{M}_{t}&:= \pmb {\eta }_{t} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} + \frac{1}{2} \pmb {\varTheta }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varPhi }_{t}^{\top }; \nonumber \\ \mathbf{N}_{t}&:= \pmb {\theta }_{t} \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} +\frac{1}{2} \pmb {\varXi }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varPhi }_{t}^{\top }; \nonumber \\ \mathbf{X}_{t}&:= - \frac{1}{2 \gamma } \left( \mathbf{b}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} \mathbf{b}_{t}^{{\varvec{v}}} + \frac{1}{4} \pmb {\varPhi }_{t} \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varPhi }_{t}^{\top }; \nonumber \\ {\varvec{Y}}_{t}^{\top }&:= - \frac{1}{\gamma } \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} \mathbf{b}_{t}^{{\varvec{v}}} + \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \mathbf{b}_{t}^{{\varvec{v}}} + \frac{1}{2} \pmb {\varPsi }_{t}^{\top } \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varPhi }_{t}^{\top }; \nonumber \\ Z_{t}&:= Z_{t + 1} - \frac{1}{2 \gamma } \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \pmb {\varSigma }_{t}^{**} {\varvec{a}}_{t}^{{\varvec{v}}} + \left( {\varvec{a}}_{t}^{{\varvec{v}}} \right) ^{\top } \left( \pmb {\varSigma }_{t}^{{\varvec{v}}} \right) ^{-1} \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\phi }_{t} - \frac{1}{2 \gamma } \pmb {\phi }_{t}^{\top } \left( \pmb {\varSigma }_{t}^{*} \right) ^{-1} \pmb {\phi }_{t} \nonumber \\&\quad + x_{t} + \frac{1}{4} \pmb {\varPsi }_{t}^{\top } \pmb {\tilde{\varOmega }}_{t}^{-1} \pmb {\varPsi }_{t}. \end{aligned}$$
(A.27)

\(\square \)

Proof of Theorem 2

The value function at maturity becomes

$$\begin{aligned} V_{T + 1} \big [ s_{T + 1} \big ]&= - \exp \Big \{ - \gamma \Big [ W_{T + 1} - \left( {\varvec{P}}_{T + 1} + \pmb {\chi }_{T + 1} {\overline{\varvec{Q}}}_{T + 1} \right) ^{\top } {\overline{\varvec{Q}}}_{T + 1} \Big ] \Big \}, \end{aligned}$$
(B.1)

and thereby, the optimal value function at time T is calculated as follows:

$$\begin{aligned} V_{T} \big [ {\varvec{s}}_{T} \big ]&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} {\mathbb {E}} \Big [ V_{T + 1} \big [ W_{T + 1}, {\varvec{P}}_{T + 1}, {\overline{\varvec{Q}}}_{T + 1}, {\varvec{R}}_{T + 1}, {\varvec{v}}_{T} \big ] \Big \vert W_{T}, {\varvec{P}}_{T}, {\overline{\varvec{Q}}}_{T}, {\varvec{R}}_{T}, {\varvec{v}}_{T - 1} \Big ] \nonumber \\&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}}{\mathbb {E}} \Big [ - \exp \Big \{ - \gamma \Big [ W_{T + 1} - \left( {\varvec{P}}_{T + 1} + \pmb {\chi }_{T + 1} {\overline{\varvec{Q}}}_{T + 1} \right) {\overline{\varvec{Q}}}_{T + 1} \Big ] \Big \} \Big \vert {\varvec{s}}_{T} \Big ] \nonumber \\&= \sup _{{\varvec{q}}_{T} \in {\mathbb {R}}^{2}} - \exp \Big \{ - \gamma \Big [ - {\varvec{q}}_{T}^{\top } \pmb {\tilde{\varOmega }}_{T} {\varvec{q}}_{T}\nonumber \\&\quad + \Big [ \overline{{\varvec{Q}}}_{T}^{\top } \pmb {\varTheta }_{T} + {\varvec{R}}_{T}^{\top } \pmb {\varXi }_{T} + {\varvec{v}}_{T - 1}^{\top } \pmb {\varPhi }_{T} + \pmb {\varPsi }_{T}^{\top } \Big ] {\varvec{q}}_{T} + W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{t} \nonumber \\&\quad + \overline{{\varvec{Q}}}_{T}^{\top } \Big [ - \left( \pmb {\chi }_{T + 1} + \pmb {\chi }_{T + 1}^{\top } \right) - \frac{1}{2} \gamma \pmb {\varPi }_{T} \pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \frac{1}{2} \gamma \pmb {\varSigma }_{T}^{\pmb {\varepsilon }} \Big ] \overline{{\varvec{Q}}}_{T} \nonumber \\&\quad + \Big [ - \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \left( \pmb {\mu }_{T}^{\pmb {\varepsilon }} \right) ^{\top } \Big ] \overline{{\varvec{Q}}}_{T} + ( 1 - \mathrm {e}^{-\rho } ) \overline{{\varvec{Q}}}_{T}^{\top } {\varvec{R}}_{T} - {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\varPi }_{T} \pmb {\kappa }_{T} \mathbf{b}_{T}^{{\varvec{v}}} {\varvec{v}}_{T - 1} \Big ] \Big \}, \end{aligned}$$
(B.2)

where \(\pmb {\varPi }_{T} := \mathrm {e}^{-\rho } \mathbf{A}_{T} + \mathbf{B}_{T}\), and

$$\begin{aligned} \pmb {\tilde{\varOmega }}_{T}&:= \frac{1}{2} \left( \pmb {\varOmega }_{T} + \pmb {\varOmega }_{T}^{\top } \right) \nonumber \\&= \frac{1}{2} \pmb {\varLambda }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) \nonumber \\&\quad + \frac{1}{2} \left\{ \pmb {\varLambda }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) \right\} ^{\top } + \frac{1}{2} \left( \pmb {\chi }_{T + 1} + \pmb {\chi }_{T + 1}^{\top } \right) + \frac{1}{2} \gamma \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) \pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) \nonumber \\&\quad + \frac{1}{2} \gamma \pmb {\varSigma }_{T}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varTheta }_{T}&:= - \pmb {\varPi }_{T} \pmb {\varLambda }_{T} + \left( \pmb {\chi }_{T + 1} + \pmb {\chi }_{T + 1}^{\top } \right) - \gamma \pmb {\varPi }_{T}\pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) + \gamma \pmb {\varSigma }_{T}^{\pmb {\varepsilon }} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varXi }_{T}&:= - ( 1 - \mathrm {e}^{-\rho } ) \mathbf{I}_{2} \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPhi }_{T}&:= - \left( \mathbf{b}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) \ ( \in {\mathbb {R}}^{2 \times 2} ); \nonumber \\ \pmb {\varPsi }_{T}^{\top }&:= - \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} \left( \mathbf{I}_{2} - \pmb {\varPi }_{T} \right) + \left( \pmb {\mu }_{T}^{\pmb {\varepsilon }} \right) ^{\top } \ ( \in {\mathbb {R}}^{1 \times 2} ). \end{aligned}$$
(B.3)

We can derive the optimal execution volume satisfying Eq. (B.2) by obtaining the optimal execution volume \({\varvec{q}}_{t}^{*}\) which attains the maximum of

$$\begin{aligned}&K_{T} \big [ {\varvec{q}}_{T} \big ] := - {\varvec{q}}_{T}^{\top } \pmb {\tilde{\varOmega }}_{T} {\varvec{q}}_{T} + \Big [ {\overline{\varvec{Q}}}_{T}^{\top } \pmb {\varTheta }_{T} + {\varvec{R}}_{T}^{\top } \pmb {\varXi }_{T} + {\varvec{v}}_{T - 1}^{\top } \pmb {\varPhi }_{T} + \pmb {\varPsi }_{T}^{\top } \Big ] {\varvec{q}}_{T} + W_{T} - {\varvec{P}}_{T}^{\top } \overline{{\varvec{Q}}}_{T} \nonumber \\&\quad + {\overline{\varvec{Q}}}_{T}^{\top } \Big [ - \left( \pmb {\chi }_{T + 1} + \pmb {\chi }_{T + 1}^{\top } \right) - \frac{1}{2} \gamma \pmb {\varPi }_{T} \pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \frac{1}{2} \gamma \pmb {\varSigma }_{T}^{\pmb {\varepsilon }} \Big ] {\overline{\varvec{Q}}}_{T} \nonumber \\&\quad + \Big [ - \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \left( \pmb {\mu }_{T}^{\pmb {\varepsilon }} \right) ^{\top } \Big ] {\overline{\varvec{Q}}}_{T} + ( 1 - \mathrm {e}^{-\rho } ) {\overline{\varvec{Q}}}_{T}^{\top } {\varvec{R}}_{T} - \overline{{\varvec{Q}}}_{T}^{\top } \pmb {\varPi }_{T} \pmb {\kappa }_{T} \mathbf{b}_{T}^{{\varvec{v}}} {\varvec{v}}_{T - 1}. \end{aligned}$$
(B.4)

Eq. (B.4) is a quadratic function with a negative definite matrix \(\pmb {\varOmega }_{T} + \pmb {\varOmega }_{T}^{\top }\) with respect to \({\varvec{q}}_{T}\), and thereby a concave function with respect to \({\varvec{q}}_{T}\), which leads to the concavity of Eq. (B.2) with respect to \({\varvec{q}}_{T}\). Therefore, by completing the square of \(K_{T} \big [ {\varvec{q}}_{T} \big ]\) with respect to \({\varvec{q}}_{T}\), we obtain the optimal execution volume at time \(t = T\):

$$\begin{aligned} {\varvec{q}}_{T}^{*}&=: \mathbf{f} ( {\varvec{s}}_{T} ) = \pmb {\tilde{\varOmega }}_{T}^{-1} \left\{ \pmb {\varTheta }_{T}^{\top } \overline{{\varvec{Q}}}_{T} + \pmb {\varXi }_{T}^{\top } {\varvec{R}}_{T} + \pmb {\varPhi }_{T}^{\top } {\varvec{v}}_{T - 1} + \pmb {\varPsi }_{T} \right\} \nonumber \\&\quad \left( =: {\varvec{a}}_{T - 1}^{*} + \mathbf{b}_{T - 1}^{*} {\overline{\varvec{Q}}}_{T - 1} + \mathbf{c}_{T - 1}^{*} {\varvec{R}}_{T - 1} + \mathbf{d}_{T - 1}^{*} {\varvec{v}}_{T - 1} \right) , \end{aligned}$$
(B.5)

where

$$\begin{aligned} {\varvec{a}}_{T}^{*} := \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPsi }_{T}; \quad \mathbf{b}_{T}^{*} := \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varTheta }_{T}^{\top }; \quad \mathbf{c}_{T}^{*} := \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varXi }_{T}^{\top }; \quad \mathbf{d}_{T}^{*} := \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPhi }_{T}^{\top }, \end{aligned}$$
(B.6)

and by substituting this into Eq. (B.2) the optimal value function becomes

$$\begin{aligned} V_{T} \big [ {\varvec{s}}_{T} \big ]&= - \exp \Big \{ - \gamma \Big [ W_{T} - {\varvec{P}}_{T}^{\top } {\overline{\varvec{Q}}}_{T} + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{G}_{T}^{*} {\overline{\varvec{Q}}}_{T} + {\varvec{H}}_{T}^{*\top } {\overline{\varvec{Q}}}_{T}\nonumber \\&\quad + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{I}_{T}^{*} {\varvec{R}}_{T} + {\varvec{R}}_{T}^{\top } \mathbf{J}_{T}^{*} {\varvec{R}}_{T} + {\varvec{L}}_{T}^{*\top } {\varvec{R}}_{T} \nonumber \\&\quad + {\overline{\varvec{Q}}}_{T}^{\top } \mathbf{M}_{T}^{*} {\varvec{v}}_{T - 1} + {\varvec{R}}_{T}^{\top } \mathbf{N}_{T}^{*} {\varvec{v}}_{T - 1} + {\varvec{v}}_{T - 1}^{\top } \mathbf{X}_{T}^{*} {\varvec{v}}_{T - 1} + {\varvec{Y}}_{T}^{*\top } {\varvec{v}}_{T - 1} + Z_{T}^{*} \Big ] \Big \}, \end{aligned}$$
(B.7)

where

$$\begin{aligned} \mathbf{G}_{T}^{*}&:= - \left( \pmb {\chi }_{T + 1} + \pmb {\chi }_{T + 1}^{\top } \right) - \frac{1}{2} \gamma \pmb {\varPi }_{T} \pmb {\kappa }_{T} \pmb {\varSigma }_{T}^{{\varvec{v}}} \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \frac{1}{2} \gamma \pmb {\varSigma }_{T}^{\pmb {\varepsilon }} + \frac{1}{4} \pmb {\varTheta }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varTheta }_{T}^{\top }; \nonumber \\ {\varvec{H}}_{T}^{*\top }&:= - \left( {\varvec{a}}_{T}^{{\varvec{v}}} \right) ^{\top } \pmb {\kappa }_{T} \pmb {\varPi }_{T} - \left( \pmb {\mu }_{T}^{\pmb {\varepsilon }} \right) ^{\top } + \frac{1}{2} \pmb {\varPsi }_{T - 1}^{\top } \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varTheta }_{T - 1}^{\top }; \nonumber \\ \mathbf{I}_{T}^{*}&:= ( 1 - \mathrm {e}^{- \rho } ) \mathbf{I}_{2} + \frac{1}{2} \pmb {\varTheta }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varXi }_{T}^{\top }; \quad \mathbf{J}_{T}^{*} := \frac{1}{4} \pmb {\varXi }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varXi }_{T}^{\top }; \quad {\varvec{L}}_{T}^{*\top } := \frac{1}{2} \pmb {\varPsi }_{T}^{\top } \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varXi }_{T}^{\top }; \nonumber \\ \mathbf{M}_{T}^{*}&:= - \pmb {\varPi }_{T} \pmb {\kappa }_{T} \mathbf{b}_{T}^{{\varvec{v}}} + \frac{1}{2} \pmb {\varTheta }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPhi }_{T}^{\top }; \quad \mathbf{N}_{T}^{*} := \frac{1}{2} \pmb {\varXi }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPhi }_{T}^{\top }; \nonumber \\ \mathbf{X}_{T}^{*}&:= \frac{1}{4} \pmb {\varPhi }_{T} \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPhi }_{T}^{\top }; \quad {\varvec{Y}}_{T}^{*\top } := \frac{1}{2} \pmb {\varPsi }_{T}^{\top } \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPhi }_{T}^{\top }; \quad Z_{T}^{*} := \frac{1}{4} \pmb {\varPsi }_{T}^{\top } \pmb {\tilde{\varOmega }}_{T}^{-1} \pmb {\varPsi }_{T}. \end{aligned}$$
(B.8)

For \(t \in \{ { T - 1, \ldots , 1 } \}\), we can recursively derive the optimal execution volume and optimal value function at each time by a similar derivation which we use to obtain the optimal execution volume in the last subsection for time \(t \in \{ { T - 2, \ldots , 1 } \}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohnishi, M., Shimoshimizu, M. Optimal Pair–Trade Execution with Generalized Cross–Impact. Asia-Pac Financ Markets 29, 253–289 (2022). https://doi.org/10.1007/s10690-021-09349-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10690-021-09349-1

Keywords

Mathematics Subject Classification

Navigation