Asia-Pacific Financial Markets

, Volume 18, Issue 2, pp 191–211 | Cite as

Constant Rebalanced Portfolio Optimization Under Nonlinear Transaction Costs

  • Yuichi Takano
  • Jun-ya GotohEmail author


We study the constant rebalancing strategy for multi-period portfolio optimization via conditional value-at-risk (CVaR) when there are nonlinear transaction costs. This problem is difficult to solve because of its nonconvexity. The nonlinear transaction costs and CVaR constraints make things worse; state-of-the-art nonlinear programming (NLP) solvers have trouble in reaching even locally optimal solutions. As a practical solution, we develop a local search algorithm in which linear approximation problems and nonlinear equations are iteratively solved. Computational results are presented, showing that the algorithm attains a good solution in a practical time. It is better than the revised version of an existing global optimization. We also assess the performance of the constant rebalancing strategy in comparison with the buy-and-hold strategy.


Multi-period portfolio optimization Constant rebalancing Transaction cost Conditional value-at-risk Market impact cost 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Algoet P. H., Cover T. M. (1988) Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. The Annals of Probability 16: 876–898CrossRefGoogle Scholar
  2. Bertsimas D., Pachamanova D. (2008) Robust multiperiod portfolio management in the presence of transaction costs. Computers & Operations Research 35: 3–17CrossRefGoogle Scholar
  3. Brandt M. W. (1999) Estimating portfolio and consumption choice: a conditional Euler equations approach. Journal of Finance 54: 1609–1645CrossRefGoogle Scholar
  4. Brennan M. J., Schwartz E. S., Lagnado R. (1997) Strategic asset allocation. Journal of Economic Dynamics & Control 21: 1377–1403CrossRefGoogle Scholar
  5. Calafiore G. C. (2009) An affine control method for optimal dynamic asset allocation with transaction costs. SIAM Journal of Control and Optimization 48: 2254–2274CrossRefGoogle Scholar
  6. Cariño D. R., Kent T., Myers D. H., Stacy C., Sylvanus M., Turner A. L., Watanabe K., Ziemba W. T. (1994) The Russell-Yasuda Kasai model: an asset/liability model for a Japanese insurance company using multistage stochastic programming. Interfaces 24: 29–49CrossRefGoogle Scholar
  7. Cornuejols G., Tütüncü R. (2007) Optimization methods in finance. Cambridge University Press, CambridgeGoogle Scholar
  8. Cover T. M. (1984) An algorithm for maximizing expected log investment return. IEEE Transactions of Information Theory 30: 369–373CrossRefGoogle Scholar
  9. Dantzig G. B., Infanger G. (1993) Multi-stage stochastic linear programs for portfolio optimization. Annals of Operations Research 45: 59–76CrossRefGoogle Scholar
  10. DeMiguel V., Garlappi L., Uppal R. (2009) Optimal versus naive diversification: how inefficient is the 1/N portfolio strategy?. Review of Financial Studies 22: 1915–1953CrossRefGoogle Scholar
  11. Ermoliev, Y., Wets, R. J.-B. (eds) (1988) Numerical techniques for stochastic optimization. Springer, BerlinGoogle Scholar
  12. Fleten S. -E., Høyland K., Wallace S. W. (2002) The performance of stochastic dynamic and fixed mix portfolio models. European Journal of Operational Research 140: 37–49CrossRefGoogle Scholar
  13. Gaivoronski A. A., Stella F. (2003) On-line portfolio selection using stochastic programming. Journal of Economic Dynamics & Control 27: 1013–1043CrossRefGoogle Scholar
  14. Hibiki N. (2003) A hybrid simulation/tree stochastic optimization model for dynamic asset allocation. In: Scherer B. (eds) Asset and liability management tools: A handbook for best practice. Risk Books, London, pp 269–294Google Scholar
  15. Hibiki N. (2006) Multi-period stochastic optimization models for dynamic asset allocation. Journal of Banking & Finance 30: 365–390CrossRefGoogle Scholar
  16. Infanger G. (2006) Dynamic asset allocation strategies using a stochastic dynamic programming approach. In: Zenios S. A., Ziemba W. T. (eds) Handbook of asset and liability management. Elsevier, Amsterdam, pp 199–251Google Scholar
  17. Ingersoll J. E. (1987) Theory of financial decision making. Rowman & Littlefield, USAGoogle Scholar
  18. Konno H., Thach P. T., Tuy H. (1997) Optimization on low rank nonconvex structures. Kluwer, DordrechtGoogle Scholar
  19. Kusy M. I., Ziemba W. T. (1986) A bank asset and liability management model. Operations Research 34: 356–376CrossRefGoogle Scholar
  20. Luenberger D. G. (1993) A preference foundation for log mean-variance criteria in portfolio choice problems. Journal of Economic Dynamics and Control 17: 887–906CrossRefGoogle Scholar
  21. Maranas C. D., Floudas C. A. (1994) Global minimum potential energy conformations of small molecules. Journal of Global Optimization 4: 135–170CrossRefGoogle Scholar
  22. Maranas C. D., Androulakis I. P., Floudas C. A., Berger A. J., Mulvey J. M. (1997) Solving long-term financial planning problems via global optimization. Journal of Economic Dynamics & Control 21: 1405–1425CrossRefGoogle Scholar
  23. Markowitz H. (1952) Portfolio selection. Journal of Finance 7: 77–91CrossRefGoogle Scholar
  24. Markowitz H. (1991) Portfolio selection: efficient diversification of investments (2nd ed.). Wiley, New YorkGoogle Scholar
  25. Merton R. C. (1969) Lifetime portfolio selection under uncertainty: The continuous-time case. Review of Economics and Statistics 51: 247–257CrossRefGoogle Scholar
  26. Merton R. C. (1971) Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory 3: 373–413CrossRefGoogle Scholar
  27. Mulvey J. M., Vladimirou H. (1989) Stochastic network optimization models for investment planning. Annals of Operations Research 20: 187–217CrossRefGoogle Scholar
  28. Mulvey, J. M., & Ziemba, W. T. (1995). Asset and liability allocation in a global environment. In R. A. Jarrow, V. Maksimovic, & W. T. Ziemba (Eds.), Finance (handbooks in operations research and management science, Vol. 9, pp. 435–463). North-Holland.Google Scholar
  29. Pang J.-S., Leyffer S. (2004) On the global minimization of the value-at-risk. Optimization Methods and Software 19: 611–631CrossRefGoogle Scholar
  30. Perold A. F., Sharpe W. F. (1988) Dynamic strategies for asset allocation. Financial Analysts Journal 44: 16–27CrossRefGoogle Scholar
  31. Pflug G. Ch. (2000) Some remarks on the value-at-risk and the conditional value-at-risk. In: Uryasev S. (eds) Probabilistic constrained optimization: Methodology and applications. Kluwer, Dordrecht, pp 272–281Google Scholar
  32. Pinar M.Ç. (2007) Robust scenario optimization based on downside-risk measure for multi-period portfolio selection. OR Spectrum 29: 295–309CrossRefGoogle Scholar
  33. Rockafellar R. T., Uryasev S. (2002) Conditional value-at-risk for general loss distributions. Journal of Banking & Finance 26: 1443–1471CrossRefGoogle Scholar
  34. Samuelson P. A. (1969) Lifetime portfolio selection by dynamic stochastic programming. Review of Economics and Statistics 51: 239–246CrossRefGoogle Scholar
  35. Skaf, J., & Boyd, S. (2008). Multi-period portfolio optimization with constraints and transaction costs. Working Paper, Stanford University.Google Scholar
  36. Tuy H. (1998) Convex analysis and global optimization. Kluwer, DordrechtGoogle Scholar
  37. Zhang X.-L., Zhang K.-C. (2009) Using genetic algorithm to solve a new multi-period stochastic optimization model. Journal of Computational and Applied Mathematics 231: 114–123CrossRefGoogle Scholar
  38. Ziemba, W. T., Mulvey, J. M. (eds) (1998) Worldwide asset and liability modeling. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Graduate School of Systems and Information EngineeringUniversity of TsukubaIbarakiJapan
  2. 2.Department of Industrial and Systems EngineeringChuo UniversityTokyoJapan

Personalised recommendations