Volatility Forecasting in the Hang Seng Index using the GARCH Approach

Abstract

The aim of this paper is to add to the literature on volatility forecasting using data from the Hong Kong stock market to determine if forecasts from GARCH based models can outperform simple historical averaging models. Overall, unlike previous studies we find that the GARCH models with non-Normal distributions show a robust volatility forecasting performance in comparison to the historical models. The results indicate that although not all models outperform simple historical averaging, the EGARCH based models, with non-normal conditional volatility, tend to produce more accurate out-of-sample forecasts using both standard measures of forecast accuracy and financial loss functions. In addition we test for asymmetric adjustment in the Hang Seng, finding strong evidence of asymmetries due to the domination of financial and property firms in this market.

This is a preview of subscription content, access via your institution.

References

  1. Aggarwal R., Inclan C., Ricardo L. (1999) Volatility in emerging stock markets. Journal of Financial and Quantitative Analysis 34: 33–55. doi:10.2307/2676245

    Article  Google Scholar 

  2. Baillie R.T., Bollerslev T., Mikkelsen H.O. (1996) Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 74: 3–30. doi:10.1016/S0304-4076(95)01749-6

    Article  Google Scholar 

  3. Chan, H., & Fung, D. (2007). Forecasting volatility of Hang Seng Index and its application on reserving for investment guarantees. Working Paper, The Actuarial Society of Hong Kong.

  4. Duan J.C., Zhang H. (2001) Pricing Hang Seng index options around the Asian financial crisis—a GARCH approach. Journal of Banking and Finance 25: 1989–2014. doi:10.1016/S0378-4266(00)00166-7

    Article  Google Scholar 

  5. Engle R.F. (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50: 987–1007

    Google Scholar 

  6. Engle R.F. (2004) Risk and volatility: Econometric models and financial practice. The American Economic Review 94: 405–420. doi:10.1257/0002828041464597

    Article  Google Scholar 

  7. Engle, R. F., & Lee, G. G. J. (1993). A permanent and transitory component model of stock return volatility, UCSD, Department of Economics, Discussion Paper No: 92-44.

  8. Engle R.F., Patton A.J. (2001) What good is a volatility model?. Quantitative Finance 1: 237–245. doi:10.1088/1469-7688/1/2/305

    Article  Google Scholar 

  9. Fong W.M., Koh S.K. (2002) The political economy of volatility dynamics in the Hong Kong stock market. Asia-Pacific Financial Markets 9: 259–282. doi:10.1023/A:1024133632104

    Article  Google Scholar 

  10. Glosten L., Jagannathan R., Runkle D. (1993) On the relation between expected return on stocks. The Journal of Finance 48: 1779–1801. doi:10.2307/2329067

    Article  Google Scholar 

  11. Ho R.Y. (1998) The Hong Kong securities markets: Review and prospects. Asia-Pacific Financial Markets 5: 29–44. doi:10.1023/A:1009671007349

    Article  Google Scholar 

  12. Lee K.Y. (1991) Are the GARCH models best in out-of-sample performance?. Economics Letters 37: 305–308. doi:10.1016/0165-1765(91)90227-C

    Article  Google Scholar 

  13. Li M.C. (2007) Wealth, volume and stock market volatility: Case of Hong Kong. Applied Economics 15: 1937–1953. doi:10.1080/00036840600707019

    Article  Google Scholar 

  14. McMillan D., Speight A. (2004) Daily volatility forecasts: Reassessing the performance of GARCH models. Journal of Forecasting 23: 449–460

    Article  Google Scholar 

  15. McMillan D., Speight A., Ap Gwilym O. (2000) Forecasting UK stock market volatility. Applied Financial Economics 10: 435–448. doi:10.1080/09603100050031561

    Article  Google Scholar 

  16. Nelson D.B. (1991) Conditional heteroscedasticity in asset returns: A new approach. Econometrica 59: 349–370. doi:10.2307/2938260

    Article  Google Scholar 

  17. Pagan A.R., Schwert G.W. (1990) Alternative models for conditional stock volatilities. Journal of Econometrics 45: 267–290. doi:10.1016/0304-4076(90)90101-X

    Article  Google Scholar 

  18. Poon S.H., Granger W.J. (2003) Forecasting volatility in financial markets: A review. Journal of Economic Literature 41: 478–539. doi:10.1257/002205103765762743

    Article  Google Scholar 

  19. So M.K.P., Li W.K., Lam K. (2002) A threshold stochastic volatility model. Journal of Forecasting 21: 473–500. doi:10.1002/for.840

    Article  Google Scholar 

  20. Yeung S.P., Gannon G. (2004) Regulatory change and structural effects in HSIF and HSI volatility. Research in International Business and Finance 3: 305–317

    Google Scholar 

  21. Wong, J., & Fung, L. (2002). Liquidity of the Hong Kong stock market since the Asian financial crisis. Research Memorandum, Hong Kong Monetary Authority.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruce Morley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, W., Morley, B. Volatility Forecasting in the Hang Seng Index using the GARCH Approach. Asia-Pac Financ Markets 16, 51–63 (2009). https://doi.org/10.1007/s10690-009-9086-4

Download citation

Keywords

  • GARCH
  • Hang Seng
  • Volatility
  • Forecast
  • Asymmetric
  • Stock price