Skip to main content
Log in

Understanding familial risk of pancreatic ductal adenocarcinoma

  • Review
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is the result of an accumulation of sequential genetic alterations. These genetic alterations can either be inherited, such as pathogenic germline variants that are associated with an increased risk of cancer, or acquired, such as somatic mutations that occur during the lifetime of an individual. Understanding the genetic basis of inherited risk of PDAC is essential to advancing patient care and outcomes through improved clinical surveillance, early detection initiatives, and targeted therapies. In this review we discuss factors associated with an increased risk of PDAC, the prevalence of genetic variants associated with an increased risk in patients with PDAC, estimates of PDAC risk in carriers of pathogenic germline variants in genes associated with an increased risk of PDAC. The role of common variants in pancreatic cancer risk will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48. https://doi.org/10.3322/caac.21763

    Article  PubMed  Google Scholar 

  2. Rahib L, Wehner MR, Matrisian LM, Nead KT (2021) Estimated projection of US Cancer incidence and death to 2040. JAMA Netw Open 4(4):e214708. https://doi.org/10.1001/jamanetworkopen.2021.4708

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M (2011) Pancreatic cancer. Lancet 378(9791):607–620. https://doi.org/10.1016/S0140-6736(10)62307-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. (2023) SEER*Explorer: An interactive website for SEER cancer statistics. vol. August 3, 2023, National Cancer Institute, pp SEER Incidence Data, November 2022 Submission (1975–2020), SEER 22 registries (excluding Illinois and Massachusetts). Expected Survival Life Tables by Socio-Economic Standards

  5. Shi C, Hruban RH, Klein AP (2009) Familial pancreatic cancer. Arch Pathol Lab Med 133(3): 365 – 74 https://doi.org/10.1043/1543-2165-133.3.365

  6. Permuth-Wey J, Egan KM (2009) Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis. Fam Cancer 8(2):109–117. https://doi.org/10.1007/s10689-008-9214-8

    Article  PubMed  Google Scholar 

  7. Klein AP (2021) Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol 18(7):493–502. https://doi.org/10.1038/s41575-021-00457-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hamada T, Yuan C, Yurgelun MB et al (2019) Family history of cancer, Ashkenazi jewish ancestry, and pancreatic cancer risk. Br J Cancer 120(8):848–854. https://doi.org/10.1038/s41416-019-0426-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lichtenstein P, Holm NV, Verkasalo PK et al (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85. https://doi.org/10.1056/NEJM200007133430201

    Article  CAS  PubMed  Google Scholar 

  10. Porter N, Laheru D, Lau B et al (2022) Risk of pancreatic Cancer in the long-term prospective Follow-Up of familial pancreatic Cancer kindreds. J Natl Cancer Inst 114(12):1681–1688. https://doi.org/10.1093/jnci/djac167

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiao L, Li D (2010) Epidemiology and prospects for Prevention of Pancreatic Cancer. Pancreatic Cancer, New York, NY, pp 3–25

    Google Scholar 

  12. Michaud DS, Giovannucci E, Willett WC, Colditz GA, Stampfer MJ, Fuchs CS (2001) Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 286(8):921–929. https://doi.org/10.1001/jama.286.8.921

    Article  CAS  PubMed  Google Scholar 

  13. Jacobs EJ, Chanock SJ, Fuchs CS et al (2010) Family history of cancer and risk of pancreatic cancer: a pooled analysis from the pancreatic Cancer Cohort Consortium (PanScan). Int J Cancer 127(6):1421–1428. https://doi.org/10.1002/ijc.25148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stolzenberg-Solomon RZ, Schairer C, Moore S, Hollenbeck A, Silverman DT (2013) Lifetime adiposity and risk of pancreatic cancer in the NIH-AARP Diet and Health Study cohort. Am J Clin Nutr 98(4):1057–1065. https://doi.org/10.3945/ajcn.113.058123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iodice S, Gandini S, Maisonneuve P, Lowenfels AB (2008) Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg 393(4):535–545. https://doi.org/10.1007/s00423-007-0266-2

    Article  PubMed  Google Scholar 

  16. Bosetti C, Lucenteforte E, Silverman DT et al (2012) Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann Oncol 23(7):1880–1888. https://doi.org/10.1093/annonc/mdr541

    Article  CAS  PubMed  Google Scholar 

  17. Koyanagi YN, Ito H, Matsuo K et al (2019) Smoking and pancreatic Cancer incidence: a pooled analysis of 10 Population-based Cohort studies in Japan. Cancer Epidemiol Biomarkers Prev 28(8):1370–1378. https://doi.org/10.1158/1055-9965.EPI-18-1327

    Article  PubMed  Google Scholar 

  18. Lucenteforte E, La Vecchia C, Silverman D et al (2012) Alcohol consumption and pancreatic cancer: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol 23(2):374–382. https://doi.org/10.1093/annonc/mdr120

    Article  CAS  PubMed  Google Scholar 

  19. Chari ST, Leibson CL, Rabe KG, Ransom J, de Andrade M, Petersen GM (2005) Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology 129(2):504–511. https://doi.org/10.1016/j.gastro.2005.05.007

    Article  PubMed  Google Scholar 

  20. Gupta S, Vittinghoff E, Bertenthal D et al (2006) New-onset diabetes and pancreatic cancer. Clin Gastroenterol Hepatol 4(11):1366–1372 quiz 01. https://doi.org/10.1016/j.cgh.2006.06.024

    Article  PubMed  Google Scholar 

  21. Munigala S, Singh A, Gelrud A, Agarwal B (2015) Predictors for pancreatic Cancer diagnosis following new-onset diabetes Mellitus. Clin Transl Gastroenterol 6:e118. https://doi.org/10.1038/ctg.2015.44

    Article  PubMed  PubMed Central  Google Scholar 

  22. Everhart J, Wright D (1995) Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA 273(20):1605–1609

    Article  CAS  PubMed  Google Scholar 

  23. Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A, Barzi F, Woodward M (2005) Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer 92(11):2076–2083. https://doi.org/10.1038/sj.bjc.6602619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bosetti C, Rosato V, Li D et al (2014) Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium. Ann Oncol 25(10):2065–2072. https://doi.org/10.1093/annonc/mdu276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elena JW, Steplowski E, Yu K et al (2013) Diabetes and risk of pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Cancer Causes Control 24(1):13–25. https://doi.org/10.1007/s10552-012-0078-8

    Article  PubMed  Google Scholar 

  26. Li D, Tang H, Hassan MM, Holly EA, Bracci PM, Silverman DT (2011) Diabetes and risk of pancreatic cancer: a pooled analysis of three large case-control studies. Cancer Causes Control 22(2):189–197. https://doi.org/10.1007/s10552-010-9686-3

    Article  CAS  PubMed  Google Scholar 

  27. Yadav D, Lowenfels AB (2013) The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 144(6):1252–1261. https://doi.org/10.1053/j.gastro.2013.01.068

    Article  PubMed  Google Scholar 

  28. Duell EJ, Lucenteforte E, Olson SH et al (2012) Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol 23(11):2964–2970. https://doi.org/10.1093/annonc/mds140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brune KA, Lau B, Palmisano E et al (2010) Importance of age of onset in pancreatic cancer kindreds. J Natl Cancer Inst 102(2):119–126. https://doi.org/10.1093/jnci/djp466

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stoffel EM, McKernin SE, Khorana AA (2019) Evaluating susceptibility to pancreatic Cancer: ASCO Clinical Practice Provisional Clinical Opinion Summary. J Oncol Pract 15(2):108–111. https://doi.org/10.1200/JOP.18.00629

    Article  PubMed  Google Scholar 

  31. Brand RE, Lerch MM, Rubinstein WS et al (2007) Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut 56(10):1460–1469. https://doi.org/10.1136/gut.2006.108456

    Article  PubMed  PubMed Central  Google Scholar 

  32. Canto MI, Goggins M, Hruban RH et al (2006) Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 4(6) 766 – 81; quiz 665. https://doi.org/10.1016/j.cgh.2006.02.005

  33. Steinberg WM, Barkin JS, Bradley EL 3rd, et al (2009) Should patients with a strong family history of pancreatic cancer be screened on a periodic basis for cancer of the pancreas? Pancreas 38(5):e137–e150. https://doi.org/10.1097/MPA.0b013e3181a86b2c

    Article  PubMed  Google Scholar 

  34. Petersen GM (2016) Familial pancreatic cancer. Semin Oncol 43(5):548–553. https://doi.org/10.1053/j.seminoncol.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim JY, Hong SM (2018) Precursor lesions of pancreatic Cancer. Oncol Res Treat 41(10):603–610. https://doi.org/10.1159/000493554

    Article  PubMed  Google Scholar 

  36. Zhang XM, Mitchell DG, Dohke M, Holland GA, Parker L (2002) Pancreatic cysts: depiction on single-shot fast spin-echo MR images. Radiology 223(2):547–553. https://doi.org/10.1148/radiol.2232010815

    Article  PubMed  Google Scholar 

  37. Andrejevic-Blant S, Kosmahl M, Sipos B, Kloppel G (2007) Pancreatic intraductal papillary-mucinous neoplasms: a new and evolving entity. Virchows Arch 451(5):863–869. https://doi.org/10.1007/s00428-007-0512-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kosmahl M, Pauser U, Peters K et al (2004) Cystic neoplasms of the pancreas and tumor-like lesions with cystic features: a review of 418 cases and a classification proposal. Virchows Arch 445(2):168–178. https://doi.org/10.1007/s00428-004-1043-z

    Article  CAS  PubMed  Google Scholar 

  39. Longnecker DS, Suriawinata AA (2022) Incidence of pancreatic intraepithelial neoplasia in an autopsy series. Pancreas 51(4):305–309. https://doi.org/10.1097/MPA.0000000000002027

    Article  CAS  PubMed  Google Scholar 

  40. Shi C, Klein AP, Goggins M et al (2009) Increased prevalence of Precursor lesions in Familial Pancreatic Cancer patients. Clin Cancer Res 15(24):7737–7743. https://doi.org/10.1158/1078-0432.CCR-09-0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Humphris JL, Johns AL, Simpson SH et al (2014) Clinical and pathologic features of familial pancreatic cancer. Cancer 120(23):3669–3675. https://doi.org/10.1002/cncr.28863

    Article  PubMed  Google Scholar 

  42. Basturk O, Hong SM, Wood LD et al (2015) A revised classification system and recommendations from the Baltimore Consensus Meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol 39(12):1730–1741. https://doi.org/10.1097/PAS.0000000000000533

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hutchings D, Jiang Z, Skaro M et al (2019) Histomorphology of pancreatic cancer in patients with inherited ATM serine/threonine kinase pathogenic variants. Mod Pathol 32(12):1806–1813. https://doi.org/10.1038/s41379-019-0317-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Surveillance (2022) Epidemiology, and end results program. Cancer stat facts: pancreatic cancer. Cited June 14

  45. Bisgaard ML, Jager AC, Myrhoj T, Bernstein I, Nielsen FC (2002) Hereditary non-polyposis colorectal cancer (HNPCC): phenotype-genotype correlation between patients with and without identified mutation. Hum Mutat 20(1):20–27. https://doi.org/10.1002/humu.10083

    Article  CAS  PubMed  Google Scholar 

  46. Lynch HT, Watson P, Lynch JF, Conway TA, Fili M (1993) Hereditary ovarian cancer. Heterogeneity in age at onset. Cancer 71(2 Suppl): 573 – 81 https://doi.org/10.1002/cncr.2820710213

  47. Roberts NJ, Norris AL, Petersen GM et al (2016) Whole genome sequencing defines the genetic heterogeneity of familial pancreatic Cancer. Cancer Discov 6(2):166–175. https://doi.org/10.1158/2159-8290.CD-15-0402

    Article  CAS  PubMed  Google Scholar 

  48. Tamura K, Yu J, Hata T et al (2018) Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci U S A 115(18):4767–4772. https://doi.org/10.1073/pnas.1720588115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhen DB, Rabe KG, Gallinger S et al (2015) BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genet Med 17(7):569–577. https://doi.org/10.1038/gim.2014.153

    Article  CAS  PubMed  Google Scholar 

  50. Takai E, Yachida S, Shimizu K et al (2016) Germline mutations in Japanese familial pancreatic cancer patients. Oncotarget 7(45):74227–74235. https://doi.org/10.18632/oncotarget.12490

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chaffee KG, Oberg AL, McWilliams RR et al (2018) Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med 20(1):119–127. https://doi.org/10.1038/gim.2017.85

    Article  CAS  PubMed  Google Scholar 

  52. Hu C, Hart SN, Polley EC et al (2018) Association between inherited germline mutations in Cancer Predisposition genes and risk of pancreatic Cancer. JAMA 319(23):2401–2409. https://doi.org/10.1001/jama.2018.6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shindo K, Yu J, Suenaga M et al (2017) Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol 35(30):3382–3390. https://doi.org/10.1200/JCO.2017.72.3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoshida R (2021) Hereditary breast and ovarian cancer (HBOC): review of its molecular characteristics, screening, treatment, and prognosis. Breast Cancer 28(6):1167–1180. https://doi.org/10.1007/s12282-020-01148-2

    Article  PubMed  Google Scholar 

  55. Hansson J (2010) Familial cutaneous melanoma. Adv Exp Med Biol 685: 134 – 45. https://doi.org/10.1007/978-1-4419-6448-9_13

    Article  Google Scholar 

  56. Jones S, Hruban RH, Kamiyama M et al (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324(5924):217. https://doi.org/10.1126/science.1171202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roberts NJ, Jiao Y, Yu J et al (2012) ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2(1): 41 – 6 https://doi.org/10.1158/2159-8290.CD-11-0194

  58. Kawamoto M, Kohi S, Abe T et al (2022) Endoplasmic stress-inducing variants in CPB1 and CPA1 and risk of pancreatic cancer: a case-control study and meta-analysis. Int J Cancer 150(7):1123–1133. https://doi.org/10.1002/ijc.33883

    Article  CAS  PubMed  Google Scholar 

  59. Chen F, Childs EJ, Mocci E et al (2019) Analysis of Heritability and Genetic Architecture of Pancreatic Cancer: a PanC4 study. Cancer Epidemiol Biomarkers Prev 28(7):1238–1245. https://doi.org/10.1158/1055-9965.EPI-18-1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klein AP, Beaty TH, Bailey-Wilson JE, Brune KA, Hruban RH, Petersen GM (2002) Evidence for a major gene influencing risk of pancreatic cancer. Genet Epidemiol 23(2):133–149. https://doi.org/10.1002/gepi.1102

    Article  PubMed  Google Scholar 

  61. Gudmundsdottir K, Ashworth A (2006) The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25(43):5864–5874. https://doi.org/10.1038/sj.onc.1209874

    Article  CAS  PubMed  Google Scholar 

  62. Holter S, Borgida A, Dodd A et al (2015) Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol 33(28):3124–3129. https://doi.org/10.1200/JCO.2014.59.7401

    Article  CAS  PubMed  Google Scholar 

  63. Brand R, Borazanci E, Speare V et al (2018) Prospective study of germline genetic testing in incident cases of pancreatic adenocarcinoma. Cancer 124(17):3520–3527. https://doi.org/10.1002/cncr.31628

    Article  CAS  PubMed  Google Scholar 

  64. Mizukami K, Iwasaki Y, Kawakami E et al (2020) Genetic characterization of pancreatic cancer patients and prediction of carrier status of germline pathogenic variants in cancer-predisposing genes. EBioMedicine 60:103033. https://doi.org/10.1016/j.ebiom.2020.103033

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lowery MA, Wong W, Jordan EJ et al (2018) Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst 110(10):1067–1074. https://doi.org/10.1093/jnci/djy024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grant RC, Selander I, Connor AA et al (2015) Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology 148(3):556–564. https://doi.org/10.1053/j.gastro.2014.11.042

    Article  CAS  PubMed  Google Scholar 

  67. Astiazaran-Symonds E, Goldstein AM (2021) A systematic review of the prevalence of germline pathogenic variants in patients with pancreatic cancer. J Gastroenterol 56(8):713–721. https://doi.org/10.1007/s00535-021-01806-y

    Article  PubMed  PubMed Central  Google Scholar 

  68. Roa BB, Boyd AA, Volcik K, Richards CS (1996) Ashkenazi jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet 14(2):185–187. https://doi.org/10.1038/ng1096-185

    Article  CAS  PubMed  Google Scholar 

  69. Thompson D, Easton DF, Breast Cancer Linkage C (2002) Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94(18):1358–1365. https://doi.org/10.1093/jnci/94.18.1358

    Article  CAS  PubMed  Google Scholar 

  70. Mocci E, Milne RL, Mendez-Villamil EY et al (2013) Risk of pancreatic cancer in breast cancer families from the breast cancer family registry. Cancer Epidemiol Biomarkers Prev 22(5):803–811. https://doi.org/10.1158/1055-9965.EPI-12-0195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Breast Cancer Linkage C (1999) Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 91(15):1310–1316. https://doi.org/10.1093/jnci/91.15.1310

    Article  Google Scholar 

  72. van Asperen CJ, Brohet RM, Meijers-Heijboer EJ et al (2005) Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 42(9):711–719. https://doi.org/10.1136/jmg.2004.028829

    Article  PubMed  PubMed Central  Google Scholar 

  73. Momozawa Y, Sasai R, Usui Y et al (2022) Expansion of Cancer Risk Profile for BRCA1 and BRCA2 pathogenic variants. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2022.0476

    Article  PubMed  PubMed Central  Google Scholar 

  74. Risch HA, McLaughlin JR, Cole DE et al (2006) Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 98(23):1694–1706. https://doi.org/10.1093/jnci/djj465

    Article  CAS  PubMed  Google Scholar 

  75. Li S, Silvestri V, Leslie G et al (2022) Cancer risks Associated with BRCA1 and BRCA2 pathogenic variants. J Clin Oncol 40(14):1529–1541. https://doi.org/10.1200/JCO.21.02112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sawhney MS, Calderwood AH, Thosani NC et al (2022) ASGE guideline on screening for pancreatic cancer in individuals with genetic susceptibility: summary and recommendations. Gastrointest Endosc 95(5):817–826. https://doi.org/10.1016/j.gie.2021.12.001

    Article  PubMed  Google Scholar 

  77. Kuchenbaecker KB, Hopper JL, Barnes DR et al (2017) Risks of breast, ovarian, and contralateral breast Cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317(23):2402–2416. https://doi.org/10.1001/jama.2017.7112

    Article  CAS  PubMed  Google Scholar 

  78. Wu S, Zhou J, Zhang K et al (2020) Molecular mechanisms of PALB2 function and its role in breast Cancer Management. Front Oncol 10:301. https://doi.org/10.3389/fonc.2020.00301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reid S, Schindler D, Hanenberg H et al (2007) Biallelic mutations in PALB2 cause fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39(2):162–164. https://doi.org/10.1038/ng1947

    Article  CAS  PubMed  Google Scholar 

  80. Yang X, Leslie G, Doroszuk A et al (2020) Cancer risks Associated with Germline PALB2 pathogenic variants: an International Study of 524 families. J Clin Oncol 38(7):674–685. https://doi.org/10.1200/JCO.19.01907

    Article  CAS  PubMed  Google Scholar 

  81. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823. https://doi.org/10.1073/pnas.68.4.820

    Article  PubMed  PubMed Central  Google Scholar 

  82. Slater EP, Langer P, Niemczyk E et al (2010) PALB2 mutations in European familial pancreatic cancer families. Clin Genet 78(5):490–494. https://doi.org/10.1111/j.1399-0004.2010.01425.x

    Article  CAS  PubMed  Google Scholar 

  83. Casadei S, Norquist BM, Walsh T et al (2011) Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 71(6):2222–2229. https://doi.org/10.1158/0008-5472.CAN-10-3958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gardiner A, Kidd J, Elias MC et al (2022) Pancreatic ductal carcinoma risk Associated with Hereditary Cancer-Risk genes. J Natl Cancer Inst 114(7):996–1002. https://doi.org/10.1093/jnci/djac069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lavin MF, Scott S, Gueven N, Kozlov, Peng S, Chen C (2004) Functional consequences of sequence alterations in the ATM gene. DNA Repair (Amst) 3(8–9):1197–1205. https://doi.org/10.1016/j.dnarep.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  86. Taylor AM, Byrd PJ (2005) Molecular pathology of ataxia telangiectasia. J Clin Pathol 58(10):1009–1015. https://doi.org/10.1136/jcp.2005.026062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hall MJ, Bernhisel R, Hughes E et al (2021) Germline pathogenic variants in the Ataxia Telangiectasia Mutated (ATM) Gene are Associated with High and moderate risks for multiple cancers. Cancer Prev Res (Phila) 14(4):433–440. https://doi.org/10.1158/1940-6207.CAPR-20-0448

    Article  CAS  PubMed  Google Scholar 

  88. Takai E, Nakamura H, Chiku S et al (2022) Whole-exome sequencing reveals new potential susceptibility genes for Japanese familial pancreatic Cancer. Ann Surg 275(4):e652–e8. https://doi.org/10.1097/SLA.0000000000004213

    Article  PubMed  Google Scholar 

  89. Cancer Genome Atlas Research Network. Electronic address aadhe, Cancer Genome Atlas, Research N (2017) Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 32(2): 185–203 e13 https://doi.org/10.1016/j.ccell.2017.07.007

  90. Smith AL, Wong C, Cuggia A et al (2018) Reflex Testing for Germline BRCA1, BRCA2, PALB2, and ATM mutations in pancreatic Cancer: mutation prevalence and clinical outcomes from Two Canadian Research Registries. JCO Precis Oncol 2:1–16. https://doi.org/10.1200/PO.17.00098

    Article  PubMed  Google Scholar 

  91. Hsu FC, Roberts NJ, Childs E et al (2021) Risk of pancreatic Cancer among individuals with pathogenic variants in the ATM Gene. JAMA Oncol 7(11):1664–1668. https://doi.org/10.1001/jamaoncol.2021.3701

    Article  PubMed  Google Scholar 

  92. Zyla RE, Hahn E, Hodgson A (2021) Gene of the month: STK11. J Clin Pathol 74(11):681–685. https://doi.org/10.1136/jclinpath-2021-207906

    Article  CAS  PubMed  Google Scholar 

  93. Jenne DE, Reimann H, Nezu J et al (1998) Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18(1):38–43. https://doi.org/10.1038/ng0198-38

    Article  CAS  PubMed  Google Scholar 

  94. Tacheci I, Kopacova M, Bures J (2021) Peutz-Jeghers syndrome. Curr Opin Gastroenterol 37(3):245–254. https://doi.org/10.1097/MOG.0000000000000718

    Article  CAS  PubMed  Google Scholar 

  95. Giardiello FM, Brensinger JD, Tersmette AC et al (2000) Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119(6):1447–1453. https://doi.org/10.1053/gast.2000.20228

    Article  CAS  PubMed  Google Scholar 

  96. Korsse SE, Harinck F, van Lier MG et al (2013) Pancreatic cancer risk in Peutz-Jeghers syndrome patients: a large cohort study and implications for surveillance. J Med Genet 50(1):59–64. https://doi.org/10.1136/jmedgenet-2012-101277

    Article  CAS  PubMed  Google Scholar 

  97. Resta N, Pierannunzio D, Lenato GM et al (2013) Cancer risk associated with STK11/LKB1 germline mutations in Peutz-Jeghers syndrome patients: results of an Italian multicenter study. Dig Liver Dis 45(7):606–611. https://doi.org/10.1016/j.dld.2012.12.018

    Article  CAS  PubMed  Google Scholar 

  98. Hearle N, Schumacher V, Menko FH et al (2006) Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 12(10):3209–3215. https://doi.org/10.1158/1078-0432.CCR-06-0083

    Article  CAS  PubMed  Google Scholar 

  99. Mao L, Merlo A, Bedi G et al (1995) A novel p16INK4A transcript. Cancer Res 55(14):2995–2997

    CAS  PubMed  Google Scholar 

  100. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366(6456):704–707. https://doi.org/10.1038/366704a0

    Article  CAS  PubMed  Google Scholar 

  101. Kimura H, Klein AP, Hruban RH, Roberts NJ (2021) The role of inherited pathogenic CDKN2A variants in susceptibility to pancreatic Cancer. Pancreas 50(8):1123–1130. https://doi.org/10.1097/MPA.0000000000001888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hansson J (2010) Familial cutaneous melanoma. Diseases of DNA Repair: 134 – 45

  103. McWilliams RR, Wieben ED, Rabe KG et al (2011) Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. Eur J Hum Genet 19(4):472–478. https://doi.org/10.1038/ejhg.2010.198

    Article  CAS  PubMed  Google Scholar 

  104. Singhi AD, George B, Greenbowe JR et al (2019) Real-time targeted Genome Profile Analysis of Pancreatic Ductal Adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology 156(8):2242–53e4. https://doi.org/10.1053/j.gastro.2019.02.037

    Article  CAS  PubMed  Google Scholar 

  105. Yurgelun MB, Chittenden AB, Morales-Oyarvide V et al (2019) Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genet Med 21(1):213–223. https://doi.org/10.1038/s41436-018-0009-5

    Article  CAS  PubMed  Google Scholar 

  106. McWilliams RR, Wieben ED, Chaffee KG et al (2018) CDKN2A germline rare coding variants and risk of pancreatic Cancer in minority populations. Cancer Epidemiol Biomarkers Prev 27(11):1364–1370. https://doi.org/10.1158/1055-9965.EPI-17-1065

    Article  PubMed  PubMed Central  Google Scholar 

  107. Helgadottir H, Hoiom V, Jonsson G et al (2014) High risk of tobacco-related cancers in CDKN2A mutation-positive melanoma families. J Med Genet 51(8):545–552. https://doi.org/10.1136/jmedgenet-2014-102320

    Article  CAS  PubMed  Google Scholar 

  108. Mukherjee B, Delancey JO, Raskin L et al (2012) Risk of non-melanoma cancers in first-degree relatives of CDKN2A mutation carriers. J Natl Cancer Inst 104(12):953–956. https://doi.org/10.1093/jnci/djs221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. de Snoo FA, Bishop DT, Bergman W et al (2008) Increased risk of cancer other than melanoma in CDKN2A founder mutation (p16-Leiden)-positive melanoma families. Clin Cancer Res 14(21):7151–7157. https://doi.org/10.1158/1078-0432.CCR-08-0403

    Article  PubMed  Google Scholar 

  110. Borg A, Sandberg T, Nilsson K et al (2000) High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. J Natl Cancer Inst 92(15):1260–1266. https://doi.org/10.1093/jnci/92.15.1260

    Article  CAS  PubMed  Google Scholar 

  111. Ghiorzo P, Ciotti P, Mantelli M et al (1999) Characterization of ligurian melanoma families and risk of occurrence of other neoplasia. Int J Cancer 83(4):441–448. https://doi.org/10.1002/(sici)1097-0215(19991112)83:4441::aid-ijc2>3.0.co;2-r

    Article  CAS  PubMed  Google Scholar 

  112. Goldstein AM, Struewing JP, Fraser MC, Smith MW, Tucker MA (2004) Prospective risk of cancer in CDKN2A germline mutation carriers. J Med Genet 41(6):421–424. https://doi.org/10.1136/jmg.2004.019349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lynch HT, Snyder CL, Shaw TG, Heinen CD, Hitchins MP (2015) Milestones of Lynch syndrome: 1895–2015. Nat Rev Cancer 15(3):181–194. https://doi.org/10.1038/nrc3878

    Article  CAS  PubMed  Google Scholar 

  114. Kastrinos F, Mukherjee B, Tayob N et al (2009) Risk of pancreatic cancer in families with Lynch syndrome. JAMA 302(16):1790–1795. https://doi.org/10.1001/jama.2009.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Moller P, Seppala TT, Bernstein I et al (2018) Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the prospective Lynch Syndrome Database. Gut 67(7):1306–1316. https://doi.org/10.1136/gutjnl-2017-314057

    Article  PubMed  Google Scholar 

  116. Mannucci A, Zuppardo RA, Crippa S et al (2020) MSH6 gene pathogenic variant identified in familial pancreatic cancer in the absence of colon cancer. Eur J Gastroenterol Hepatol 32(3):345–349. https://doi.org/10.1097/MEG.0000000000001617

    Article  CAS  PubMed  Google Scholar 

  117. Chen JM, Montier T, Ferec C (2001) Molecular pathology and evolutionary and physiological implications of pancreatitis-associated cationic trypsinogen mutations. Hum Genet 109(3):245–252. https://doi.org/10.1007/s004390100580

    Article  CAS  PubMed  Google Scholar 

  118. Whitcomb DC (2013) Genetic risk factors for pancreatic disorders. Gastroenterology 144(6):1292–1302. https://doi.org/10.1053/j.gastro.2013.01.069

    Article  CAS  PubMed  Google Scholar 

  119. Whitcomb DC, Gorry MC, Preston RA et al (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14(2):141–145. https://doi.org/10.1038/ng1096-141

    Article  CAS  PubMed  Google Scholar 

  120. Zhan W, Shelton CA, Greer PJ, Brand RE, Whitcomb DC (2018) Germline variants and risk for pancreatic Cancer: a systematic review and emerging concepts. Pancreas 47(8):924–936. https://doi.org/10.1097/MPA.0000000000001136

    Article  PubMed  PubMed Central  Google Scholar 

  121. Witt H, Beer S, Rosendahl J et al (2013) Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet 45(10):1216–1220. https://doi.org/10.1038/ng.2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kujko AA, Berki DM, Oracz G et al (2017) A novel p.Ser282Pro CPA1 variant is associated with autosomal dominant hereditary pancreatitis. Gut 66(9):1728–1730. https://doi.org/10.1136/gutjnl-2017-313816

    Article  CAS  PubMed  Google Scholar 

  123. Nakano E, Geisz A, Masamune A et al (2015) Variants in pancreatic carboxypeptidase genes CPA2 and CPB1 are not associated with chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 309(8):G688–G694. https://doi.org/10.1152/ajpgi.00241.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Klein AP, Wolpin BM, Risch HA et al (2018) Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun 9(1):556. https://doi.org/10.1038/s41467-018-02942-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lin Y, Nakatochi M, Hosono Y et al (2020) Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nat Commun 11(1):3175. https://doi.org/10.1038/s41467-020-16711-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu C, Miao X, Huang L et al (2011) Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet 44(1):62–66. https://doi.org/10.1038/ng.1020

    Article  CAS  PubMed  Google Scholar 

  127. Arslan AA, Helzlsouer KJ, Kooperberg C et al (2010) Anthropometric measures, body mass index, and pancreatic cancer: a pooled analysis from the pancreatic Cancer Cohort Consortium (PanScan). Arch Intern Med 170(9):791–802. https://doi.org/10.1001/archinternmed.2010.63

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by: The Sol Goldman Pancreatic Cancer Research Center; Susan Wojcicki and Dennis Troper; The Lustgarten Foundation; The Rolfe Pancreatic Cancer Foundation; NIH/NCI P50 CA62924; DOD W81XWH2210325.

Author information

Authors and Affiliations

Authors

Contributions

Contributions: (I) Conception and design: All authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Corresponding authors

Correspondence to Alison P. Klein or Nicholas J. Roberts.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paranal, R.M., Wood, L.D., Klein, A.P. et al. Understanding familial risk of pancreatic ductal adenocarcinoma. Familial Cancer (2024). https://doi.org/10.1007/s10689-024-00383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10689-024-00383-2

Keywords

Navigation