Skip to main content

Lack of evidence for CDK12 as an ovarian cancer predisposing gene

Abstract

CDK12 variants were investigated as a genetic susceptibility to ovarian cancer in a series of 416 unrelated and consecutive patients with ovarian carcinoma and who carry neither germline BRCA1 nor BRCA2 pathogenic variant. The presence of CDK12 variants was searched in germline DNA by massive parallel sequencing on pooled DNAs. The lack of detection of deleterious variants and the observed proportion of missense variants in the series of ovarian carcinoma patients as compared with all human populations strongly suggests that CDK12 is not an ovarian cancer predisposing gene.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Lheureux S, Gourley C, Vergote I, Oza AM (2019) Epithelial ovarian cancer. Lancet 393:1240–1253. https://doi.org/10.1016/S0140-6736(18)32552-2

    Article  PubMed  Google Scholar 

  2. 2.

    Kuchenbaecker KB, Hopper JL, Barnes DR et al (2017) Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317:2402–2416. https://doi.org/10.1001/jama.2017.7112

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Golmard L, Castera L, Krieger S et al (2017) Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur J Hum Genet 25:1345–1353. https://doi.org/10.1038/s41431-017-0021-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Loveday C, Turnbull C, Ramsay E et al (2011) Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet 43:879–882. https://doi.org/10.1038/ng.893

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Loveday C, Turnbull C, Ruark E, et al. (2012) Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat Genet 44:475–476; author reply 6 https://doi.org/10.1038/ng.2224

    CAS  Article  Google Scholar 

  6. 6.

    Bewtra C, Watson P, Conway T, Read-Hippee C, Lynch HT (1992) Hereditary ovarian cancer: a clinicopathological study. Int J Gynecol Pathol 11:180–187

    CAS  Article  Google Scholar 

  7. 7.

    Helder-Woolderink JM, Blok EA, Vasen HF, Hollema H, Mourits MJ, De Bock GH (2016) Ovarian cancer in Lynch syndrome; a systematic review. Eur J Cancer 55:65–73. https://doi.org/10.1016/j.ejca.2015.12.005

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Bonadona V, Bonaiti B, Olschwang S et al (2011) Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 305:2304–2310. https://doi.org/10.1001/jama.2011.743

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Wu YM, Cieslik M, Lonigro RJ et al (2018) Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173(1770–82):e14. https://doi.org/10.1016/j.cell.2018.04.034

    CAS  Article  Google Scholar 

  10. 10.

    Popova T, Manie E, Boeva V et al (2016) Ovarian cancers harboring inactivating mutations in CDK12 display a distinct genomic instability pattern characterized by large tandem duplications. Cancer Res 76:1882–1891. https://doi.org/10.1158/0008-5472.CAN-15-2128

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Juan HC, Lin Y, Chen HR, Fann MJ (2016) Cdk12 is essential for embryonic development and the maintenance of genomic stability. Cell Death Differ 23:1038–1048. https://doi.org/10.1038/cdd.2015.157

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Blazek D, Kohoutek J, Bartholomeeusen K et al (2011) The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 25:2158–2172. https://doi.org/10.1101/gad.16962311

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bajrami I, Frankum JR, Konde A et al (2014) Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res 74:287–297. https://doi.org/10.1158/0008-5472.CAN-13-2541

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Tien JF, Mazloomian A, Cheng SG et al (2017) CDK12 regulates alternative last exon mRNA splicing and promotes breast cancer cell invasion. Nucleic Acids Res 45:6698–6716. https://doi.org/10.1093/nar/gkx187

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Krajewska M, Dries R, Grassetti AV et al (2019) CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nat Commun 10:1757. https://doi.org/10.1038/s41467-019-09703-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Dubbury SJ, Boutz PL, Sharp PA (2018) CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 564:141–145. https://doi.org/10.1038/s41586-018-0758-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Choi SH, Martinez TF, Kim S et al (2019) CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability. Genes Dev 33:418–435. https://doi.org/10.1101/gad.322339.118

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Au CH, Ho DN, Kwong A, Chan TL, Ma ESK (2017) BAMClipper: removing primers from alignments to minimize false-negative mutations in amplicon next-generation sequencing. Sci Rep 7:1567. https://doi.org/10.1038/s41598-017-01703-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. https://doi.org/10.1038/ng.806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  Google Scholar 

  22. 22.

    Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11:377–394. https://doi.org/10.1089/1066527041410418

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Boeva V, Popova T, Bleakley K et al (2012) Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28:423–425. https://doi.org/10.1093/bioinformatics/btr670

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291. https://doi.org/10.1038/nature19057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Brovkina OI, Shigapova L, Chudakova DA et al (2018) The ethnic-specific spectrum of germline nucleotide variants in dna damage response and repair genes in hereditary breast and ovarian cancer patients of tatar descent. Front Oncol 8:421. https://doi.org/10.3389/fonc.2018.00421

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bogdanova NV, Schurmann P, Valova Y et al (2019) A splice site variant of CDK12 and breast cancer in three Eurasian populations. Front Oncol 9:493. https://doi.org/10.3389/fonc.2019.00493

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Pan L, Xie W, Li KL et al (2015) Heterochromatin remodeling by CDK12 contributes to learning in Drosophila. Proc Natl Acad Sci USA 112:13988–13993. https://doi.org/10.1073/pnas.1502943112

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Institut National de la Santé et de la Recherche Médicale (INSERM) and the Institut Curie. M. S-G and A. E. are supported by fellowships from the Université de Rouen and the Ligue Nationale Contre le Cancer, respectively. The Institut Curie ICGex NGS platform is funded by the EQUIPEX investissements d’avenir program (ANR-10-EQPX-03) and ANR10-INBS-09-08 from the Agence Nationale de la Recherche. We thank the patients. We also acknowledge support from the Institut Curie for sample collection, banking and processing: the Biological Resource Center and its members (O. Mariani).

Author information

Affiliations

Authors

Contributions

Conception and design: EM, CH, M-HS. Development of methodology: AE. Acquisition of data: EM, AE, MS-G, MR, VR, SB, TP, GB, LG. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): EM, AE, M-HS. Writing, review, and/or revision of the manuscript: EM, DS-L, AE, M-HS. Study supervision: DS-L, SB, CH, M-HS.

Corresponding author

Correspondence to Marc-Henri Stern.

Ethics declarations

Conflict of interest

E. Manié, T. Popova and M.-H. Stern are named inventors of a patent licensed to Myriad Genetics. No potential conflicts of interest were disclosed by the other authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eeckhoutte, A., Saint-Ghislain, M., Reverdy, M. et al. Lack of evidence for CDK12 as an ovarian cancer predisposing gene. Familial Cancer 19, 203–209 (2020). https://doi.org/10.1007/s10689-020-00169-2

Download citation

Keywords

  • CDK12
  • Cancer susceptibility
  • Ovarian carcinoma
  • Pool sequencing
  • NGS