Skip to main content

Advertisement

Log in

Immunohistochemical null-phenotype for mismatch repair proteins in colonic carcinoma associated with concurrent MLH1 hypermethylation and MSH2 somatic mutations

  • Short Communication
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Microsatellite instability, a well-established driver pathway in colorectal carcinogenesis, can develop in both sporadic and hereditary conditions via different molecular alterations in the DNA mismatch repair (MMR) genes. MMR protein immunohistochemistry (IHC) is currently widely used for the detection of MMR deficiency in solid tumors. The IHC test, however, can show varied staining patterns, posing challenges in the interpretation of the staining results in some cases. Here we report a case of an 80-year-old female with a colonic adenocarcinoma that exhibited an unusual “null” IHC staining pattern with complete loss of all four MMR proteins (MLH1, MSH2, MSH6, and PMS2). This led to subsequent MLH1 methylation testing and next generation sequencing which demonstrated that the loss of all MMR proteins was associated with concurrent promoter hypermethylation of MLH1 and double somatic truncating mutations in MSH2. These molecular findings, in conjunction with the patient’s age being 80 years and the fact that the patient had no personal or family cancer history, indicated that the MMR deficiency was highly likely sporadic in nature. Thus, the stringent Lynch syndrome type surveillance programs were not recommended to the patient and her family members. This case illustrates a rare but important scenario where a null IHC phenotype signifies complex underlying molecular alternations that bear clinical management implications, highlighting the need for recognition and awareness of such unusual IHC staining patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138:2073–2087

    Google Scholar 

  2. Hagen CE, Lefferts J, Hornick JL, Srivastava A (2011) Null pattern of immunoreactivity in a Lynch syndrome-associated colon cancer due to germline MSH2 mutation and somatic MLH1 hypermethylation. Am J Surg Pathol 35:1902–1905

    Article  PubMed  Google Scholar 

  3. Sourrouille I, Coulet F, Lefevre JH, Colas C, Eyries M, Svrcek M et al (2013) Somatic mosaicism and double somatic hits can lead to MSI colorectal tumors. Fam Cancer 12:27–33

    Article  CAS  PubMed  Google Scholar 

  4. Mensenkamp AR, Vogelaar IP, van Zelst-Stams WAG, Goossens M, Ouchene H, Hendriks-Cornelissen SJB et al (2014) Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 146:643–646

    Article  CAS  PubMed  Google Scholar 

  5. Shia J (2015) Evolving approach and clinical significance of detecting DNA mismatch repair deficiency in colorectal carcinoma. Semin Diagn Pathol 32:352–361

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shia J (2008) Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn JMD 10:293–300

    Article  PubMed  Google Scholar 

  7. Airaud F, Küry S, Valo I, Maury I, Bonneau D, Ingster O, et al (2012) A de novo germline MLH1 mutation in a Lynch syndrome patient with discordant immunohistochemical and molecular biology test results. World J Gastroenterol 18:5635–5639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shia J, Zhang L, Shike M, Guo M, Stadler Z, Xiong X, et al (2013) Secondary mutation in a coding mononucleotide tract in MSH6 causes loss of immunoexpression of MSH6 in colorectal carcinomas with MLH1/PMS2 deficiency. Mod Pathol 26:131–138

    Article  CAS  PubMed  Google Scholar 

  9. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A et al (2015) Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn JMD 17:251–264

    Article  CAS  PubMed  Google Scholar 

  10. Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD, et al (2014) MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinforma Oxf Engl 30:1015–1016

    Article  CAS  Google Scholar 

  11. Dymerska D, Serrano-Fernández P, Suchy J, Pławski A, Słomski R, Kaklewski K et al (2010) Combined iPLEX and TaqMan assays to screen for 45 common mutations in Lynch syndrome and FAP patients. J Mol Diagn JMD 12:82–90

    Article  CAS  PubMed  Google Scholar 

  12. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed  Google Scholar 

  13. Morak M, Heidenreich B, Keller G, Hampel H, Laner A, de la Chapelle A, et al (2014) Biallelic MUTYH mutations can mimic Lynch syndrome. Eur J Hum Genet EJHG 22:1334–1337

    Article  CAS  PubMed  Google Scholar 

  14. Elsayed FA, Kets CM, Ruano D, van den Akker B, Mensenkamp AR, Schrumpf M, et al (2015) Germline variants in POLE are associated with early onset mismatch repair deficient colorectal cancer. Eur J Hum Genet EJHG 23:1080–1084

    Article  CAS  PubMed  Google Scholar 

  15. Provenzale D, Gupta S, Ahnen DJ, Bray T, Cannon JA, Cooper G et al (2016) Genetic/familial high-risk assessment: colorectal version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw JNCCN 14:1010–1030

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinru Shia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Stadler, Z.K., Zhang, L. et al. Immunohistochemical null-phenotype for mismatch repair proteins in colonic carcinoma associated with concurrent MLH1 hypermethylation and MSH2 somatic mutations. Familial Cancer 17, 225–228 (2018). https://doi.org/10.1007/s10689-017-0031-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-017-0031-9

Keywords

Navigation