Advertisement

Familial Cancer

, Volume 17, Issue 2, pp 179–185 | Cite as

Novel BRCA1 splice-site mutation in ovarian cancer patients of Slavic origin

  • Ana Krivokuca
  • Vita Setrajcic Dragos
  • Ljiljana Stamatovic
  • Ana Blatnik
  • Ivana Boljevic
  • Vida Stegel
  • Jelena Rakobradovic
  • Petra Skerl
  • Stevo Jovandic
  • Mateja Krajc
  • Mirjana Brankovic Magic
  • Srdjan Novakovic
Original Article
  • 219 Downloads

Abstract

Mutations in breast cancer susceptibility gene 1 (BRCA1) lead to defects in a number of cellular pathways including DNA damage repair and transcriptional regulation, resulting in the elevated genome instability and predisposing to breast and ovarian cancers. We report a novel mutation LRG_292t1:c.4356delA,p.(Ala1453Glnfs*3) in the 12th exon of BRCA1, in the splice site region near the donor site of intron 12. It is a frameshift mutation with the termination codon generated on the third amino acid position from the site of deletion. Human Splice Finder 3.0 and MutationTaster have assessed this variation as disease causing, based on the alteration of splicing, creation of premature stop codon and other potential alterations initiated by nucleotide deletion. Among the most important alterations are frameshift and splice site changes (score of the newly created donor splice site: 0.82). c.4356delA was associated with two ovarian cancer cases in two families of Slavic origin. It was detected by next generation sequencing, and confirmed with Sanger sequencing in both cases. Because of the fact that it changes the reading frame of the protein, novel mutation c.4356delA p.(Ala1453Glnfs*3) in BRCA1 gene might be of clinical significance for hereditary ovarian cancer. Further functional as well as segregation analyses within the families are necessary for appropriate clinical classification of this variant. Since it has been detected in two ovarian cancer patients of Slavic origin, it is worth investigating founder effect of this mutation in Slavic populations.

Keywords

BRCA1 Novel mutation Ovarian cancer Slavic populations 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Walsh T, Casadei S, Lee MK et al (2011) Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci. doi: 10.1073/pnas.1115052108 Google Scholar
  2. 2.
    Stegel V, Krajc M, Žgajnar J et al (2011) The occurrence of germline BRCA1 and BRCA2sequence alterations in Slovenian population. BMC Med Genet 12:9. doi: 10.1186/1471-2350-12-9 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Novaković S, Milatović M, Cerkovnik P et al (2012) Novel BRCA1 and BRCA2 pathogenic mutations in Slovene hereditary breast and ovarian cancer families. Int J Oncol 41:1619–1627. doi: 10.3892/ijo.2012.1595 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Krajc M, Teugels E, Zgajnar J et al (2008) Five recurrent BRCA1/2 mutations are responsible for cancer predisposition in the majority of Slovenian breast cancer families. BMC Med Genet 9:83. doi: 10.1186/1471-2350-9-83 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Krajc M, Zadnik V, Novaković S et al (2014) Geographical distribution of Slovenian BRCA1/2 families according to family origin: implications for genetic screening. Clin Genet 85:59–63. doi: 10.1111/cge.12119 CrossRefPubMedGoogle Scholar
  6. 6.
    Mavaddat N, Peock S, Frost D et al (2013) Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 105:812–822. doi: 10.1093/jnci/djt095 CrossRefPubMedGoogle Scholar
  7. 7.
    Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25:1329–1333. doi: 10.1200/JCO.2006.09.1066 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Parkes EE, Kennedy RD (2016) Clinical application of Poly(ADP-Ribose) polymerase inhibitors in high-grade serous ovarian cancer. Oncologist 21:586–593. doi: 10.1634/theoncologist.2015-0438 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Muggia F, Safra T (2014) “BRCAness” and its implications for platinum action in gynecologic cancer. Anticancer Res 34:551–556PubMedPubMedCentralGoogle Scholar
  10. 10.
    Pal T, Permuth-Wey J, Kapoor R et al (2007) Improved survival in BRCA2 carriers with ovarian cancer. Fam Cancer 6:113–119. doi: 10.1007/s10689-006-9112-x CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. doi: 10.1038/nrg775 PubMedGoogle Scholar
  12. 12.
    Pagani F, Baralle FE (2004) Opinion: genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5:389–396. doi: 10.1038/nrg1327 CrossRefPubMedGoogle Scholar
  13. 13.
    Krawczak M, Thomas NST, Hundrieser B et al (2007) Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 28:150–158. doi: 10.1002/humu.20400 CrossRefPubMedGoogle Scholar
  14. 14.
  15. 15.
    National Guidelines of Good Clinical Practice: Breast Cancer Diagnosis and Treatment (Serbian) (2013) Ed. Radan Dzodic, Ministry of Health of Republic of SerbiaGoogle Scholar
  16. 16.
    Dobričić J, Branković-Magić M, Filipović S, Radulović S (2010) Novel BRCA1/2 mutations in Serbian breast and breast–ovarian cancer patients with hereditary predisposition. Cancer Genet Cytogenet 202:27–32. doi: 10.1016/j.cancergencyto.2010.06.001 CrossRefPubMedGoogle Scholar
  17. 17.
    Desmet F-O, Hamroun D, Lalande M et al (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67–e67. doi: 10.1093/nar/gkp215 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576. doi: 10.1038/nmeth0810-575 CrossRefPubMedGoogle Scholar
  19. 19.
    Werness BA, Eltabbakh GH (2001) Familial ovarian cancer and early ovarian cancer: biologic, pathologic, and clinical features. Int J Gynecol Pathol 20:48–63. doi: 10.1097/00004347-200101000-00005 CrossRefPubMedGoogle Scholar
  20. 20.
    Ory HW, Layde PM, Rubin GI (1987) The reduction in risk of ovarian cancer associated with oral-contraceptive use. N Engl J Med 316:650–655. doi: 10.1056/NEJM198703123161102 CrossRefGoogle Scholar
  21. 21.
    Prat J, Ribé A, Gallardo A (2005) Hereditary ovarian cancer. Hum Pathol 36:861–870. doi: 10.1016/j.humpath.2005.06.006 CrossRefPubMedGoogle Scholar
  22. 22.
    Pharoah PDP, Ponder BAJ (2002) The genetics of ovarian cancer. Best Pract Res Clin Obstet Gynaecol 16:449–468CrossRefPubMedGoogle Scholar
  23. 23.
    Beggs AD, Latchford AR, Vasen HFA et al (2010) Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut 59:975–986. doi: 10.1136/gut.2009.198499 CrossRefPubMedGoogle Scholar
  24. 24.
    Kohlmann W, Gruber SB (1993) Lynch syndrome. University of Washington, SeattleGoogle Scholar
  25. 25.
    Couch FJ, Nathanson KL, Offit K (2014) Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science 343:1466–1470. doi: 10.1126/science.1251827 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Clark SL, Rodriguez AM, Snyder RR et al (2012) Structure-function of the tumor suppressor Brca1. Comput Struct Biotechnol J 1:1–8. doi: 10.5936/csbj.201204005 CrossRefGoogle Scholar
  27. 27.
    Gatei M, Zhou B-B, Hobson K et al (2001) Ataxia Telangiectasia Mutated (ATM) Kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites: IN VIVO ASSESSMENT USING PHOSPHO-SPECIFIC ANTIBODIES. J Biol Chem 276:17276–17280. doi: 10.1074/jbc.M011681200 CrossRefPubMedGoogle Scholar
  28. 28.
    Beckta JM, Dever SM, Gnawali N et al (2015) Mutation of the BRCA1 SQ-cluster results in aberrant mitosis, reduced homologous recombination, and a compensatory increase in non-homologous end joining. Oncotarget 6(29):27674–27687CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ward AJ, Cooper TA (2010) NIH public access. J Pathol 220:152–163. doi: 10.1002/path.2649.The PubMedPubMedCentralGoogle Scholar
  30. 30.
    Burset M, Seledtsov IA, Solovyev VV (2000) Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res 28:4364–4375CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lee Y, Rio DC (2015) Mechanisms and regulation of alternative Pre-mRNA splicing. Annu Rev Biochem 84:291–323. doi: 10.1146/annurev-biochem-060614-034316 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Garcia-Blanco MA, Baraniak AP, Lasda EL (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22:535–546. doi: 10.1038/nbt964 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute for Oncology and Radiology of SerbiaBelgradeSerbia
  2. 2.Institute of Oncology LjubljanaLjubljanaSlovenia
  3. 3.Military Medical AcademyBelgradeSerbia

Personalised recommendations