Skip to main content
Log in

Truncation of the MSH2 C-terminal 60 amino acids disrupts effective DNA mismatch repair and is causative for Lynch syndrome

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Missense variants of DNA mismatch repair (MMR) genes pose a problem in clinical genetics as long as they cannot unambiguously be assigned as the cause of Lynch syndrome (LS). To study such variants of uncertain clinical significance, we have developed a functional assay based on direct measurement of MMR activity in mouse embryonic stem cells expressing mutant protein from the endogenous alleles. We have applied this protocol to a specific truncation mutant of MSH2 that removes 60 C-terminal amino acids and has been found in suspected LS families. We show that the stability of the MSH2/MSH6 heterodimer is severely perturbed, causing attenuated MMR in in vitro assays and cancer predisposition in mice. This mutation can therefore unambiguously be considered as deleterious and causative for LS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lynch HT, Lynch J (2000) Lynch syndrome: genetics, natural history, genetic counseling, and prevention. J Clin Oncol 18:19S–31S

    CAS  PubMed  Google Scholar 

  2. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    Article  CAS  PubMed  Google Scholar 

  3. Nash GM, Gimbel M, Shia J, Culliford AT, Nathanson DR, Ndubuisi M, Yamaguchi Y, Zeng ZS, Barany F, Paty PB (2003) Automated, multiplex assay for high-frequency microsatellite instability in colorectal cancer. J Clin Oncol 21:3105–3112

    Article  CAS  PubMed  Google Scholar 

  4. Karran P (2001) Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis 22:1931–1937

    Article  CAS  PubMed  Google Scholar 

  5. Stojic L, Mojas N, Cejka P, di Pietro M, Ferrari S, Marra G, Jiricny J (2003) Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes Dev 18:1331–1344

    Article  Google Scholar 

  6. Rayssiguier C, Thaler DS, Radman M (1989) The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396–401

    Article  CAS  PubMed  Google Scholar 

  7. De Wind N, Dekker M, Berns A, Radman M, te Riele H (1995) Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82:321–330

    Article  PubMed  Google Scholar 

  8. Gradia S, Subramanian D, Wilson T, Acharya S, Makhov A, Griffith J, Fishel R (1999) hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell 3:255–261

    Article  CAS  PubMed  Google Scholar 

  9. Umar A, Risinger JI, Glaab WE, Tindall KR, Barrett JC, Kunkel TA (1998) Functional overlap in mismatch repair by human MSH3 and MSH6. Genetics 148:1637–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dekker M, de Vries S, Aarts M, Dekker R, Brouwers C, Wiebenga O, de Wind N, Cantelli E, Tonelli R, te Riele H (2011) Transient suppression of MLH1 allows effective single-nucleotide substitution by single-stranded oligonucleotides. Mutat Res 715:52–60

    Article  CAS  PubMed  Google Scholar 

  11. Wielders EA, Dekker RJ, Holt I, Morris GE, te Riele H (2011) Characterization of MSH2 variants by endogenous gene modification in mouse embryonic stem cells. Hum Mutat 32:389–396

    Article  CAS  PubMed  Google Scholar 

  12. Mangold E, Pagenstecher C, Friedl W, Mathiak M, Buettner R, Engel C, Loeffler M, Holinski-Feder E, Müller-Koch Y, Keller G, Schackert HK, Krüger S, Goecke T, Moeslein G, Kloor M, Gebert J, Kunstmann E, Schulmann K, Rüschoff J, Propping P (2005) Spectrum and frequencies of mutations in MSH2 and MLH1 identified in 1,721 German families suspected of hereditary nonpolyposis colorectal cancer. Int J Cancer 116:692–702

    Article  CAS  PubMed  Google Scholar 

  13. Krüger S, Plaschke J, Jeske B, Görgens H, Pistorius SR, Bier A, Kreuz FR, Theissig F, Aust DE, Saeger HD, Schackert HK (2003) Identification of six novel MSH2 and MLH1 germline mutations in HNPCC. Hum Mutat 21:445–446

    Article  PubMed  Google Scholar 

  14. Wang Q, Lasset C, Desseigne F, Saurin JC, Maugard C, Navarro C, Ruano E, Descos L, Trillet-Lenoir V, Bosset JF, Puisieux A (1999) Prevalence of germline mutations of hMLH1, hMSH2, hPMS1, hPMS2, and hMSH6 genes in 75 French kindreds with nonpolyposis colorectal cancer. Hum Genet 105:79–85

    CAS  PubMed  Google Scholar 

  15. Papp J, Kovacs ME, Olah E (2007) Germline MLH1 and MSH2 mutational spectrum including frequent large genomic aberrations in Hungarian hereditary non-polyposis colorectal cancer families: implications for genetic testing. World J Gastroenterol 13:2727–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyaki M, Konishi M, Muraoka M, Kikuchi-Yanoshita R, Tanaka K, Iwama T, Mori T, Koike M, Ushio K, Chiba M et al (1995) Germ line mutations of hMSH2 and hMLH1 genes in Japanese families with hereditary nonpolyposis colorectal cancer (HNPCC): usefulness of DNA analysis for screening and diagnosis of HNPCC patients. J Mol Med 73:515–520

    Article  CAS  PubMed  Google Scholar 

  17. Yuan Y, Han HJ, Zheng S, Park JG (1998) Germline mutations of hMLH1 and hMSH2 genes in patients with suspected hereditary nonpolyposis colorectal cancer and sporadic early-onset colorectal cancer. Dis Colon Rectum 41:434–440

    Article  CAS  PubMed  Google Scholar 

  18. Millar AL, Pal T, Madlensky L, Sherman C, Temple L, Mitri A, Cheng H, Marcus V, Gallinger S, Redston M, Bapat B, Narod S (1999) Mismatch repair gene defects contribute to the genetic basis of double primary cancers of the colorectum and endometrium. Hum Mol Genet 8:823–829

    Article  CAS  PubMed  Google Scholar 

  19. Terdiman JP, Gum JR Jr, Conrad PG, Miller GA, Weinberg V, Crawley SC, Levin TR, Reeves C, Schmitt A, Hepburn M, Sleisenger MH, Kim YS (2001) Efficient detection of hereditary nonpolyposis colorectal cancer gene carriers by screening for tumor microsatellite instability before germline genetic testing. Gastroenterology 120:21–30

    Article  CAS  PubMed  Google Scholar 

  20. Durno C, Aronson M, Bapat B, Cohen Z, Gallinger S (2005) Family history and molecular features of children, adolescents, and young adults with colorectal carcinoma. Gut 54:1146–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bianchi F, Galizia E, Bracci R, Belvederesi L, Catalani R, Loretelli C, Giorgetti G, Ferretti C, Bearzi I, Porfiri E, Cellerino R (2007) Effectiveness of the CRCAPRO program in identifying patients suspected for HNPCC. Clin Genet 71:158–164

    Article  CAS  PubMed  Google Scholar 

  22. Baudhuin LM, Mai M, French AJ, Kruckeberg KE, Swanson RL, Winters JL, Courteau LK, Thibodeau SN (2005) Analysis of hMLH1 and hMSH2 gene dosage alterations in hereditary nonpolyposis colorectal cancer patients by novel methods. J Mol Diagn 7:226–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Percesepe A, Borghi F, Menigatti M, Losi L, Foroni M, Di Gregorio C, Rossi G, Pedroni M, Sala E, Vaccina F, Roncucci L, Benatti P, Viel A, Genuardi M, Marra G, Kristo P, Peltomäki P, Ponz de Leon M (2001) Molecular screening for hereditary nonpolyposis colorectal cancer: a prospective, population-based study. J Clin Oncol 19:3944–3950

    Article  CAS  PubMed  Google Scholar 

  24. Ponz de Leon M, Benatti P, Borghi F, Pedroni M, Scarselli A, Di Gregorio C, Losi L, Viel A, Genuardi M, Abbati G, Rossi G, Menigatti M, Lamberti I, Ponti G, Roncucci L (2004) Aetiology of colorectal cancer and relevance of monogenic inheritance. Gut 53:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J, Panescu J, Fix D, Lockman J, Comeras I, de la Chapelle A (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352:1851–1860

    Article  CAS  PubMed  Google Scholar 

  26. Wagner A, Barrows A, Wijnen JT, van der Klift H, Franken PF, Verkuijlen P, Nakagawa H, Geugien M, Jaghmohan-Changur S, Breukel C, Meijers-Heijboer H, Morreau H, van Puijenbroek M, Burn J, Coronel S, Kinarski Y, Okimoto R, Watson P, Lynch JF, de la Chapelle A, Lynch HT, Fodde R (2003) Molecular analysis of hereditary nonpolyposis colorectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am J Hum Genet 72:1088–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Swensen J, Lewis CM, Cannon-Albright LA (1997) Identification of a one-base germline deletion (codon 888 del C) and an intron splice acceptor site polymorphism in hMSH2. Hum Mutat 10:80–81

    Article  CAS  PubMed  Google Scholar 

  28. Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS (2007) Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 26:579–592

    Article  CAS  PubMed  Google Scholar 

  29. Gupta S, Gellert M, Yang W (2012) Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops. Nat Struct Mol Biol 19:72–78

    Article  CAS  Google Scholar 

  30. Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK (2000) The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature 407:711–717

    Article  CAS  PubMed  Google Scholar 

  31. Calmann MA, Nowosielska A, Marinus MG (2005) The MutS C terminus is essential for mismatch repair activity in vivo. J Bacteriol 187:6577–6579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mendillo ML, Putnam CD, Kolodner RD (2007) Escherichia coli MutS tetramerization domain structure reveals that stable dimers but not tetramers are essential for DNA mismatch repair in vivo. J Biol Chem 282:16345–16354

    Article  CAS  PubMed  Google Scholar 

  33. Dekker M, Brouwers C, Aarts M, van der Torre J, de Vries S, van de Vrugt H, te Riele H (2006) Effective oligonucleotide-mediated gene disruption in ES cells lacking the mismatch repair protein MSH3. Gene Ther 13:686–694

    Article  CAS  PubMed  Google Scholar 

  34. De Wind N, Dekker M, Claij N, Jansen L, van Klink Y, Radman M, Riggins G, Van der Valk M, Van ‘t Wout K, Te Riele H (1999) HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 23:359–362

    Article  PubMed  Google Scholar 

  35. Claij N, Te Riele H (2002) Methylation tolerance in mismatch repair proficient cells with low MSH2 level. Oncogene 21:2873–2879

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank dr. Allan Bradley for providing the Msh2 / ; Msh3 / ESC line, Roelof Pruntel for help with sequencing and microsatellite analysis, Marieke Aarts, Marleen Dekker and Hellen Houlleberghs for discussions and helpful comments on the manuscript, and members of the NKI animal facility for technical support. This work was financially supported by the Dutch Cancer Society (Grant NKI 2009-4477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hein te Riele.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Three-dimensional structure of MSH2/MSH3 dimer. The image is derived from Gupta et al. [29] and shows MSH2 on the right and MSH3 on the left. The three cyan and two grey helices at the bottom constitute dimerization domains at the C-termini of MSH2 and MSH3, respectively, which contribute to dimer stabilization by hydrophobic interactions and salt bridges. Mutations listed in Table S1 disconnect the most right cyan helix from the lower brown helix in MSH2 that are linked by a disordered (non-visible) loop (PNG 514 kb)

Supplementary material 2 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wielders, E., Delzenne-Goette, E., Dekker, R. et al. Truncation of the MSH2 C-terminal 60 amino acids disrupts effective DNA mismatch repair and is causative for Lynch syndrome. Familial Cancer 16, 221–229 (2017). https://doi.org/10.1007/s10689-016-9945-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-016-9945-x

Keywords

Navigation