Skip to main content

Advertisement

Log in

The role of germline mutations in the BRCA1/2 and mismatch repair genes in men ascertained for early-onset and/or familial prostate cancer

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Prostate cancer (PrCa) is one of the most common cancers diagnosed worldwide and 5–10 % of all cases are estimated to be associated with inherited predisposition. Even though there is strong evidence that the genetic component is significant in PrCa, the genetic etiology of familial and early-onset disease is largely unknown. Although it has been suggested that men from families with hereditary breast/ovarian cancer (HBOC) and, more recently, with Lynch syndrome may have an increased risk for PrCa, the contribution of these syndromes to PrCa predisposition in families ascertained for early-onset and/or familial PrCa, independently of the presence of other cancers in the family, is uncertain. To quantify the contribution of genes associated with HBOC and Lynch syndromes to PrCa predisposition, we have tested for germline mutations 460 early-onset and/or familial PrCa patients. All patients were screened for the six mutations that are particularly common in Portugal and 38 of them were selected for complete sequencing of BRCA1/2 and/or MLH1, MSH2 and MSH6. Two patients were found to harbor the same MSH2 mutation and a third patient carried a Portuguese BRCA2 founder mutation. None of the alterations were identified in 288 control subjects. Furthermore, we reviewed the 62 PrCa diagnoses in all HBOC (n = 161) and Lynch syndrome (n = 124) families previously diagnosed at our department, and found five other BRCA2 mutation carriers and two additional MSH2 mutation carriers. The clinicopathological characteristics of mutation carriers are in concordance with earlier data suggesting an aggressive PrCa phenotype and support the hypothesis that mutation carriers might benefit from targeted screening according to the gene mutated in the germline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ewing CM, Ray AM, Lange EM et al (2012) Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 366:141–149. doi:10.1056/NEJMoa1110000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Akbari MR, Trachtenberg J, Lee J et al (2012) Association between germline HOXB13 G84E mutation and risk of prostate cancer. J Natl Cancer Inst 104:1260–1262. doi:10.1093/jnci/djs288

    Article  PubMed  CAS  Google Scholar 

  3. Breyer JP, Avritt TG, McReynolds KM et al (2012) Confirmation of the HOXB13 G84E germline mutation in familial prostate cancer. Cancer Epidemiol Biomark Prev 21:1348–1353. doi:10.1158/1055-9965.EPI-12-0495

    Article  CAS  Google Scholar 

  4. Laitinen VH, Wahlfors T, Saaristo L et al (2013) HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol Biomark Prev 22:452–460. doi:10.1158/1055-9965.EPI-12-1000-T

    Article  CAS  Google Scholar 

  5. Xu J, Lange EM, Lu L et al (2013) HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet 132:5–14. doi:10.1007/s00439-012-1229-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Karlsson R, Aly M, Clements M et al (2014) A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol 65:169–176. doi:10.1016/j.eururo.2012.07.027

    Article  PubMed  CAS  Google Scholar 

  7. Lin X, Qu L, Chen Z et al (2013) A novel germline mutation in HOXB13 is associated with prostate cancer risk in Chinese men. Prostate 73:169–175. doi:10.1002/pros.22552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Maia S, Cardoso M, Pinto P et al (2015) Identification of two novel HOXB13 germline mutations in portuguese prostate cancer patients. PLoS One 10:e0132728. doi:10.1371/journal.pone.0132728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  PubMed  CAS  Google Scholar 

  10. Wooster R, Bignell G, Lancaster J et al (1996) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792. doi:10.1038/378789a0

    Article  Google Scholar 

  11. Thiessen EU (1974) Concerning a familial association between breast cancer and both prostatic and uterine malignancies. Cancer 34:1102–1107

    Article  PubMed  CAS  Google Scholar 

  12. Anderson DE, Badzioch MD (1992) Breast cancer risks in relatives of male breast cancer patients. J Natl Cancer Inst 84:1114–1117

    Article  PubMed  CAS  Google Scholar 

  13. Tulinius H, Egilsson V, Olafsdóttir GH, Sigvaldason H (1992) Risk of prostate, ovarian, and endometrial cancer among relatives of women with breast cancer. BMJ 305:855–857. doi:10.1136/bmj.305.6858.855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. The Breast Cancer Linkage, Consortium (1999) Cancer risks in BRCA2 mutation carriers. the Breast Cancer Linkage Consortium. J Natl Cancer Inst 91:1310–1316. doi:10.1093/jnci/91.15.1310

    Article  Google Scholar 

  15. Van Asperen CJ, Brohet RM, Meijers-Heijboer EJ et al (2005) Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 42:711–719. doi:10.1136/jmg.2004.028829

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kote-Jarai Z, Leongamornlert D, Saunders E et al (2011) BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 105:1230–1234. doi:10.1038/bjc.2011.383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Edwards SM, Kote-Jarai Z, Meitz J et al (2003) Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 72:1–12. doi:10.1086/345310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Leongamornlert D, Mahmud N, Tymrakiewicz M et al (2012) Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 106:1697–1701. doi:10.1038/bjc.2012.146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cybulski C, Górski B, Gronwald J et al (2008) BRCA1 mutations and prostate cancer in Poland. Eur J Cancer Prev 17:62–66. doi:10.1097/CEJ.0b013e32809b4d20

    Article  PubMed  CAS  Google Scholar 

  20. Moran A, O’Hara C, Khan S et al (2012) Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer 11:235–242. doi:10.1007/s10689-011-9506-2

    Article  PubMed  CAS  Google Scholar 

  21. Grindedal EM, Møller P, Eeles R et al (2009) Germ-line mutations in mismatch repair genes associated with prostate cancer. Cancer Epidemiol Biomark Prev 18:2460–2467. doi:10.1158/1055-9965.EPI-09-0058

    Article  CAS  Google Scholar 

  22. Engel C, Loeffler M, Steinke V et al (2012) Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol 30:4409–4415. doi:10.1200/JCO.2012.43.2278

    Article  PubMed  Google Scholar 

  23. Win A, Lindor N, Young J et al (2012) Risks of primary extracolonic cancers following colorectal cancer in Lynch syndrome. J Natl Cancer Inst 104:1363–1372. doi:10.1016/j.urolonc.2013.03.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rosty C, Walsh MD, Lindor NM et al (2014) High prevalence of mismatch repair deficiency in prostate cancers diagnosed in mismatch repair gene mutation carriers from the colon cancer family registry. Fam Cancer 13:573–582. doi:10.1007/s10689-014-9744-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Aarnio M, Sankila R, Pukkala E et al (1999) Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 81:214–218

    Article  PubMed  CAS  Google Scholar 

  26. Scott RJ, McPhillips M, Meldrum CJ et al (2001) Hereditary nonpolyposis colorectal cancer in 95 families: differences and similarities between mutation-positive and mutation-negative kindreds. Am J Hum Genet 68:118–127. doi:10.1086/316942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Dowty JG, Win AK, Buchanan DD et al (2013) Cancer risks for MLH1 and MSH2 mutation carriers. Hum Mutat 34:490–497. doi:10.1002/humu.22262

    Article  PubMed  CAS  Google Scholar 

  28. Machado PM, Brandão RD, Cavaco BM et al (2007) Screening for a BRCA2 rearrangement in high-risk breast/ovarian cancer families: evidence for a founder effect and analysis of the associated phenotypes. J Clin Oncol 25:2027–2034. doi:10.1200/JCO.2006.06.9443

    Article  PubMed  CAS  Google Scholar 

  29. Peixoto A, Santos C, Rocha P et al (2009) The c.156-157insAlu BRCA2 rearrangement accounts for more than one-fourth of deleterious BRCA mutations in northern/central Portugal. Breast Cancer Res Treat 114:31–38. doi:10.1007/s10549-008-9978-4

    Article  PubMed  CAS  Google Scholar 

  30. Pinheiro M, Pinto C, Peixoto A et al (2011) A novel exonic rearrangement affecting MLH1 and the contiguous LRRFIP2 is a founder mutation in Portuguese Lynch syndrome families. Genet Med 13:895–902. doi:10.1097/GIM.0b013e31821dd525

    Article  PubMed  CAS  Google Scholar 

  31. Martins RG, Nunes JB, Máximo V et al (2013) A founder SDHB mutation in Portuguese paraganglioma patients. Endocr Relat Cancer 20:L23–L26. doi:10.1530/ERC-12-0399

    Article  PubMed  CAS  Google Scholar 

  32. Pinheiro M, Pinto C, Peixoto A et al (2013) The MSH2 c.388_389del mutation shows a founder effect in Portuguese Lynch syndrome families. Clin Genet 84:244–250. doi:10.1111/cge.12062

    Article  PubMed  CAS  Google Scholar 

  33. Peixoto A, Santos C, Pinto P et al (2014) The role of targeted BRCA1/BRCA2 mutation analysis in hereditary breast/ovarian cancer families of Portuguese ancestry. Clin Genet 88:41–48. doi:10.1111/cge.12441

    Article  PubMed  CAS  Google Scholar 

  34. Thompson BA, Spurdle AB, Plazzer JP et al (2014) Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 46:107–115. doi:10.1038/ng.2854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. doi:10.1186/1471-2105-13-134

    Google Scholar 

  36. Pinheiro M, Ahlquist T, Danielsen SA et al (2010) Colorectal carcinomas with microsatellite instability display a different pattern of target gene mutations according to large bowel site of origin. BMC Cancer. doi:10.1186/1471-2407-10-587

    Google Scholar 

  37. Bancroft EK, Page EC, Castro E et al (2014) Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol 66:489–499. doi:10.1016/j.eururo.2014.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  38. Agalliu I, Karlins E, Kwon EM et al (2007) Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer 97:826–831. doi:10.1038/sj.bjc.6603929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gayther SA, de Foy KA, Harrington P et al (2000) The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators. Cancer Res 60:4513–4518

    PubMed  CAS  Google Scholar 

  40. Wilkens EP, Freije D, Xu J et al (1999) No evidence for a role of BRCA1 or BRCA2 mutations in Ashkenazi Jewish families with hereditary prostate cancer. Prostate 39:280–284. doi:10.1002/(SICI)1097-0045(19990601)39:4<280:AID-PROS8>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  41. Sinclair CS, Berry R, Schaid D et al (2000) BRCA1 and BRCA2 have a limited role in familial prostate cancer. Cancer Res 60:1371–1375

    PubMed  CAS  Google Scholar 

  42. Agalliu I, Kwon EM, Zadory D et al (2007) Germline mutations in the BRCA2 gene and susceptibility to hereditary prostate cancer. Clin Cancer Res 13:839–843. doi:10.1158/1078-0432.CCR-06-2164

    Article  PubMed  CAS  Google Scholar 

  43. Lehrer S, Fodor F, Stock RG et al (1998) Absence of 185delAG mutation of the BRCA1 gene and 6174delT mutation of the BRCA2 gene in Ashkenazi Jewish men with prostate cancer. Br J Cancer 78:771–773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hubert A, Peretz T, Manor O et al (1999) The Jewish Ashkenazi founder mutations in the BRCA1/BRCA2 genes are not found at an increased frequency in Ashkenazi patients with prostate cancer. Am J Hum Genet 65:921–924. doi:10.1086/302525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nastiuk KL, Mansukhani M, Terry MB et al (1999) Common mutations in BRCA1 and BRCA2 do not contribute to early prostate cancer in Jewish men. Prostate 40:172–177. doi:10.1002/(SICI)1097-0045(19990801)40:3<172:AID-PROS5>3.0.CO;2-R

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Vazina A, Baniel J, Yaacobi Y et al (2000) The rate of the founder Jewish mutations in BRCA1 and BRCA2 in prostate cancer patients in Israel. Br J Cancer 83:463–466. doi:10.1054/bjoc.2000.1249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hamel N, Kotar K, Foulkes WD (2003) Founder mutations in BRCA1/2 are not frequent in Canadian Ashkenazi Jewish men with prostate cancer. BMC Med Genet. doi:10.1186/1471-2350-4-7

    PubMed  PubMed Central  Google Scholar 

  48. Thompson D, Easton D (2001) Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet 68:410–419. doi:10.1086/318181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rebbeck TR, Mitra N, Wan F et al (2015) Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 313:1347–1361. doi:10.1001/jama.2014.5985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Barrow PJ, Ingham S, O’Hara C et al (2013) The spectrum of urological malignancy in Lynch syndrome. Fam Cancer 12:57–63. doi:10.1007/s10689-012-9573-z

    Article  PubMed  CAS  Google Scholar 

  51. Raymond VM, Mukherjee B, Wang F et al (2013) Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol 31:1713–1718. doi:10.1200/JCO.2012.44.1238

    Article  PubMed  PubMed Central  Google Scholar 

  52. Haraldsdottir S, Hampel H, Wei L et al (2014) Prostate cancer incidence in males with Lynch syndrome. Genet Med 16:1–5. doi:10.1038/gim.2013.193

    Article  Google Scholar 

  53. Fredriksson H, Ikonen T, Autio V et al (2006) Identification of germline MLH1 alterations in familial prostate cancer. Eur J Cancer 42:2802–2806. doi:10.1016/j.ejca.2006.04.024

    Article  PubMed  CAS  Google Scholar 

  54. Soravia C, van der Klift H, Bründler M-A et al (2003) Prostate cancer is part of the hereditary non-polyposis colorectal cancer (HNPCC) tumor spectrum. Am J Med Genet A 121A:159–162. doi:10.1002/ajmg.a.20106

    Article  PubMed  Google Scholar 

  55. Bauer CM, Ray AM, Halstead-Nussloch BA et al (2011) Hereditary prostate cancer as a feature of Lynch syndrome. Fam Cancer 10:37–42. doi:10.1007/s10689-010-9388-8

    Article  PubMed  PubMed Central  Google Scholar 

  56. Eggener SE, Scardino PT, Walsh PC et al (2011) Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J Urol 185:869–875. doi:10.1016/j.juro.2010.10.057

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cooperberg MR, Broering JM, Carroll PR (2010) Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol 28:1117–1123. doi:10.1200/JCO.2009.26.0133

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wilt TJ, Brawer MK, Jones KM et al (2012) Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367:203–213. doi:10.1056/NEJMoa1113162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Castro E, Goh C, Olmos D et al (2013) Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 31:1748–1757. doi:10.1200/JCO.2012.43.1882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Castro E, Goh C, Leongamornlert D et al (2014) Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur Urol. doi:10.1016/j.eururo.2014.10.022

    PubMed Central  Google Scholar 

  61. Castro E, Goh CL, Eeles RA (2013) Prostate cancer screening in BRCA and Lynch syndrome mutation carriers. Am Soc Clin Oncol Educ Book. doi:10.1200/EdBook_AM.2013.33.e50

    PubMed  Google Scholar 

  62. Teugels E, De Brakeleer S, Goelen G et al (2005) De novo Alu element insertions targeted to a sequence common to the BRCA1 and BRCA2 genes. Hum Mutat 26:284. doi:10.1002/humu.9366

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Michael Griffiths from the West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Birmingham, United Kingdom for having kindly provided us the primers and PCR conditions for Sanger sequencing of the BRCA1/2 and MMR genes. We deeply appreciate the participation of patients and their families in this study. SM and PPi were awarded PhD Grants (SFRH/BD/71397/2010 and SFRH/BD/73719/2010, respectively) by the Portuguese Foundation for Science and Technology (www.fct.pt/index.phtml.en). MC, MP and PPa are recipients of research scholarships awarded by Portuguese Cancer Association (www.ligacontracancro.pt). The project was also funded by the Portuguese Oncology Institute-Porto (www.ipoporto.pt/en/; Grant Reference: CI-IPOP 16-2012) and by strategic funding of the Portuguese Foundation for Science and Technology (UID/DTP/00776/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel R. Teixeira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Institutional Ethics Committee of the Portuguese Oncology Institute-Porto, approval number: 38.010) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, S., Cardoso, M., Paulo, P. et al. The role of germline mutations in the BRCA1/2 and mismatch repair genes in men ascertained for early-onset and/or familial prostate cancer. Familial Cancer 15, 111–121 (2016). https://doi.org/10.1007/s10689-015-9832-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-015-9832-x

Keywords

Navigation