Skip to main content

Advertisement

Log in

APC rearrangements in familial adenomatous polyposis: heterogeneity of deletion lengths and breakpoint sequences underlies similar phenotypes

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Familial adenomatous polyposis (FAP) is a dominantly inherited syndrome leading to the development of multiple intestinal polyps and colorectal cancer. FAP is associated with germline defects of APC tumor suppressor gene; although truncating mutations account for the majority of cases, large APC deletions represent a common disease-causing defect. While a number of intragenic deletions have been well-characterized, sequencing data of breakpoints involved in large APC rearrangements are extremely scanty. We characterized six deletions identified by multiplex ligation-dependent probe amplification (three intragenic and three larger deletions encompassing the APC locus): in each case, we precisely mapped the breakpoints by array-comparative genomic hybridization and/or long-range PCR followed by sequencing. All rearrangements were novel and no rearrangements proved to be recurrent or clustered. The three intragenic deletions involved exons 4, 9 and 14, respectively; larger deletions (30,444, 265,471 and 921,295 bp in length) involved APC as well as adjacent genes. Nine out of 12 breakpoints fell within repetitive elements (5 Alu, 2 LINE, 1 Tigger and 1 MIR), while the remaining 3 fell within unique sequences. In five out of six patients, non-allelic homologous recombination or non-homologous end joining appear as the most likely mechanisms behind APC rearrangements. Although a certain variability of clinical features was detectable both between and within families with deletions, all deletion carriers were classifiable as FAP patients showing colonic and extracolonic manifestations that belong to the spectrum of the syndrome. Therefore, different sized deletions, variable breakpoint localizations and haploinsufficiency for other genes besides APC, resulted in the same FAP clinical phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kastrinos F, Syngal S (2011) Inherited colorectal cancer syndromes. Cancer J 17:405–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Plawski A, Banasiewicz T, Borun P, Kubaszewski L, Krokowicz P, Skrzypczak-Zielinska M, Lubinski J (2013) Familial adenomatous polyposis of the colon. Hered Cancer Clin Pract 11:15

    Article  PubMed Central  PubMed  Google Scholar 

  3. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, Hodges AK, Davies DR, David SS, Sampson JR, Cheadle JP (2002) Inherited variants of MYH associated with somatic G:C–>T: a mutations in colorectal tumors. Nat Genet 30:227–232

    Article  CAS  PubMed  Google Scholar 

  4. Venesio T, Molatore S, Cattaneo F, Arrigoni A, Risio M, Ranzani GN (2004) High frequency of MYH gene mutations in a subset of patients with familial adenomatous polyposis. Gastroenterology 126:1681–1685

    Article  CAS  PubMed  Google Scholar 

  5. Pineda M, González S, Lázaro C, Blanco I, Capellá G (2010) Detection of genetic alterations in hereditary colorectal cancer screening. Mutat Res 693:19–31

    Article  CAS  PubMed  Google Scholar 

  6. Valenta T, Hausmann G, Basler K (2012) The many faces and functions of β-catenin. EMBO J 31:2714–2736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Aretz S, Stienen D, Uhlhaas S, Pagenstecher C, Mangold E, Caspari R, Propping P, Friedl W (2005) Large submicroscopic genomic APC deletions are a common cause of typical familial adenomatous polyposis. J Med Genet 42:185–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Michils G, Tejpar S, Thoelen R, van Cutsem E, Vermeesch JR, Fryns JP, Legius E, Matthijs G (2005) Large deletions of the APC gene in 15% of mutation-negative patients with classical polyposis (FAP): a Belgian study. Hum Mutat 25:125–134

    Article  CAS  PubMed  Google Scholar 

  9. Nielsen M, Bik E, Hes FJ, Breuning MH, Vasen HF, Bakker E, Tops CM, Weiss MM (2007) Genotype-phenotype correlations in 19 Dutch cases with APC gene deletions and a literature review. Eur J Hum Genet 15:1034–1042

    Article  CAS  PubMed  Google Scholar 

  10. Rohlin A, Engwall Y, Fritzell K, Göransson K, Bergsten A, Einbeigi Z, Nilbert M, Karlsson P, Björk J, Nordling M (2011) Inactivation of promoter 1B of APC causes partial gene silencing: evidence for a significant role of the promoter in regulation and causative of familial adenomatous polyposis. Oncogene 30:4977–4989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kadiyska TK, Todorov TP, Bichev SN, Vazharova RV, Nossikoff AV, Savov AS, Mitev VI (2014) APC promoter 1B deletion in familial polyposis--implications for mutation-negative families. Clin Genet 85:452–457

  12. Venesio T, Balsamo A, Sfiligoi C, Fuso L, Molatore S, Ranzani GN, Risio M (2007) Constitutional high expression of an APC mRNA isoform in a subset of attenuated familial adenomatous polyposis patients. J Mol Med (Berl) 85:305–312

    Article  CAS  Google Scholar 

  13. Renkonen ET, Nieminen P, Abdel-Rahman WM, Moisio AL, Järvelä I, Arte S, Järvinen HJ, Peltomäki P (2005) Adenomatous polyposis families that screen APC mutation-negative by conventional methods are genetically heterogeneous. J Clin Oncol 23:5651–5659

    Article  CAS  PubMed  Google Scholar 

  14. Castellsagué E, González S, Guinó E, Stevens KN, Borràs E, Raymond VM, Lázaro C, Blanco I, Gruber SB, Capellá G (2010) Allele-specific expression of APC in adenomatous polyposis families. Gastroenterology 139:439–447, 447.e1

  15. Spier I, Horpaopan S, Vogt S, Uhlhaas S, Morak M, Stienen D, Draaken M, Ludwig M, Holinski-Feder E, Nöthen MM, Hoffmann P, Aretz S (2012) Deep intronic APC mutations explain a substantial proportion of patients with familial or early-onset adenomatous polyposis. Hum Mutat 33:1045–1050

    Article  CAS  PubMed  Google Scholar 

  16. Casper M, Petek E, Henn W, Niewald M, Schneider G, Zimmer V, Lammert F, Raedle J (2014) Multidisciplinary treatment of desmoid tumours in Gardner’s syndrome due to a large interstitial deletion of chromosome 5q. QJM 107:521–527

  17. Lee S, Chae H, Park IY, Kim M, Kim Y, Shin JC, Lee J, Son J (2012) Genotype-phenotype correlation of a 5q22.3 deletion associated with craniofacial and limb defects. Gene 494:105–108

    Article  CAS  PubMed  Google Scholar 

  18. Torrezan GT, da Silva FC, Krepischi AC, dos Santos EM, Rossi BM, Carraro DM (2012) A novel SYBR-based duplex qPCR for the detection of gene dosage: detection of an APC large deletion in a familial adenomatous polyposis patient with an unusual phenotype. BMC Med Genet 13:55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Su LK, Kohlmann W, Ward PA, Lynch PM (2002) Different familial adenomatous polyposis phenotypes resulting from deletions of the entire APC exon 15. Hum Genet 111:88–95

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi M, Kikuchi M, Ohkura N, Yaguchi H, Nagamura Y, Ohnami S, Ushiama M, Yoshida T, Sugano K, Iwama T, Kosugi S, Tsukada T (2006) Detection of APC gene deletion by double competitive polymerase chain reaction in patients with familial adenomatous polyposis. Int J Oncol 29:413–421

    CAS  PubMed  Google Scholar 

  21. Vetro A, Manolakos E, Petersen MB, Thomaidis L, Liehr T, Croci G, Franchi F, Marinelli M, Meneghelli E, Dal Bello B, Cesari S, Iasci A, Arrigo G, Zuffardi O (2012) Unexpected results in the constitution of small supernumerary marker chromosomes. Eur J Med Genet 55:185–190

    Article  PubMed  Google Scholar 

  22. Akopian D, Shen K, Zhang X, Shan SO (2013) Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem 82:693–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124:573–586

    Article  CAS  PubMed  Google Scholar 

  24. Arribas-Layton M, Wu D, Lykke-Andersen J, Song H (2013) Structural and functional control of the eukaryotic mRNA decapping machinery. Biochim Biophys Acta 1829:580–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kinzler KW, Nilbert MC, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hamilton SR, Hedge P, Markham A, Carlson M, Joslyn G, Groden J, White R, Miki Y, Miyoshi Y, Nishisho I, Nakamura Y (1991) Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 251:1366–1370

    Article  CAS  PubMed  Google Scholar 

  26. Pilarski RT, Brothman AR, Benn P, Shulman Rosengren S (1999) Attenuated familial adenomatous polyposis in a man with an interstitial deletion of chromosome arm 5q. Am J Med Genet 86:321–324

    Article  CAS  PubMed  Google Scholar 

  27. Cattaneo F, Molatore S, Mihalatos M, Apessos A, Venesio T, Bione S, Grignani P, Nasioulas G, Ranzani GN (2007) Heterogeneous molecular mechanisms underlie attenuated familial adenomatous polyposis. Genet Med 9:836–841

    Article  CAS  PubMed  Google Scholar 

  28. Chen DH, Cimino PJ, Ranum LP, Zoghbi HY, Yabe I, Schut L, Margolis RL, Lipe HP, Feleke A, Matsushita M, Wolff J, Morgan C, Lau D, Fernandez M, Sasaki H, Raskind WH, Bird TD (2005) The clinical and genetic spectrum of spinocerebellar ataxia 14. Neurology 64:1258–1260

    Article  CAS  PubMed  Google Scholar 

  29. Jéru I, Duquesnoy P, Fernandes-Alnemri T, Cochet E, Yu JW, Lackmy-Port-Lis M, Grimprel E, Landman-Parker J, Hentgen V, Marlin S, McElreavey K, Sarkisian T, Grateau G, Alnemri ES, Amselem S (2008) Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci USA 105:1614–1619

    Article  PubMed Central  PubMed  Google Scholar 

  30. Asai H, Hirano M, Shimada K, Kiriyama T, Furiya Y, Ikeda M, Iwamoto T, Mori T, Nishinaka K, Konishi N, Udaka F, Ueno S (2009) Protein kinase C gamma, a protein causative for dominant ataxia, negatively regulates nuclear import of recessive-ataxia-related aprataxin. Hum Mol Genet 18:3533–3543

    Article  CAS  PubMed  Google Scholar 

  31. Chen JM, Cooper DN, Férec C, Kehrer-Sawatzki H, Patrinos GP (2010) Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol 20:222–233

    Article  CAS  PubMed  Google Scholar 

  32. Su LK, Steinbach G, Sawyer JC, Hindi M, Ward PA, Lynch PM (2000) Genomic rearrangements of the APC tumor-suppressor gene in familial adenomatous polyposis. Hum Genet 106:101–107

    Article  CAS  PubMed  Google Scholar 

  33. Cao X, Eu KW, Seow-Choen F, Zhao Y, Cheah PY (2001) Topoisomerase-I- and Alu-mediated genomic deletions of the APC gene in familial adenomatous polyposis. Hum Genet 108:436–444

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Unit of Hereditary Cancer (VG, LV) was supported by projects of “Fondi 5 per mille” to IRCCS AOU San Martino-IST, Genoa.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmina N. Ranzani.

Additional information

Marialuisa Quadri and Annalisa Vetro have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quadri, M., Vetro, A., Gismondi, V. et al. APC rearrangements in familial adenomatous polyposis: heterogeneity of deletion lengths and breakpoint sequences underlies similar phenotypes. Familial Cancer 14, 41–49 (2015). https://doi.org/10.1007/s10689-014-9750-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-014-9750-3

Keywords

Navigation