Functional Analysis and Its Applications

, Volume 52, Issue 1, pp 45–48 | Cite as

On the Pólya–Szégö Inequality for Functionals with Variable Exponent

  • S. V. Bankevich
Brief Communications


Analogues of the Pólya–Szégö inequality with variable exponent in the integrand are considered. Necessary and sufficient conditions for the fulfillment of these inequalities are obtained.

Key words

symmetrization variable exponent Pólya–Szégö inequality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Talenti, Milan J. Math., 84:1 (2016), 105–157.MathSciNetCrossRefGoogle Scholar
  2. [2]
    F. Brock, Calc. Var. Partial Differential Equations, 8:1 (1999), 15–25.MathSciNetCrossRefGoogle Scholar
  3. [3]
    S. V. Bankevich and A. I. Nazarov, Calc. Var. Partial Differential Equations, 53:3–4 (2015), 627–647.MathSciNetCrossRefGoogle Scholar
  4. [4]
    S. V. Bankevich and A. I. Nazarov, Dokl. Ross. Akad. Nauk, 438:1 (2011), 11–13; English transl.: Dokl. Math., 83:3 (2011), 287–289.Google Scholar
  5. [5]
    L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer-Verlag, Berlin, 2011.Google Scholar
  6. [6]
    V. V. Zhikov, On Variational Problems and Nonlinear Elliptic Equations with Nonstandard Growth Conditions [in Russian], Tamara Rozhkovskaya, Novosibirsk, 2017.Google Scholar
  7. [7]
    I. I. Sharapudinov, Some Questions of Approximation Theory in Lebesgue Spaces with Variable Exponent [in Russian], Itogi Nauki. Yug Rossii. Matematicheskaya Monografiya, YuMI VNTs i RSO-A, Vladikavkaz, 2012.Google Scholar
  8. [8]
    G. Buttazzo, M. Giaquinta, and S. Hildebrandt, One-dimensional Calculus of Variations: an Introduction, Oxford University Press, Oxford, 1998.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations