Skip to main content
Log in

Multiplication of conjugacy classes, colligations, and characteristic functions of matrix argument

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We extend the classical construction of operator colligations and characteristic functions. Consider the group G of finitary block unitary matrices of order α+∞+···+∞ (m times) and its subgroup K ≅ U(∞), which consists of block diagonal unitary matrices with the identity block of order α and a matrix u ∈ U(∞) repeated m times. It turns out that there is a natural multiplication on the space G//K of conjugacy classes. We construct “spectral data” of conjugacy classes, which visualize the multiplication and are sufficient for reconstructing a conjugacy class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Beauville, “Determinantal hypersurfaces,” Michigan Math. J., 48:1 (2000), 39–64.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. M. Brodskij, “On operator nodes and their characteristic functions,” Dokl. Akad. Nauk SSSR, 198 (1971), 16–19; English transl.: Sov. Math. Dokl., 12 (1971), 696–700.

    MathSciNet  MATH  Google Scholar 

  3. M. S. Brodskij, “Unitary operator colligations and their characteristic functions,” Uspekhi Mat. Nauk, 33:4(202) (1978), 141–168; English transl.: Russian Math. Surveys, 33:4 (1978), 159–191.

    MathSciNet  MATH  Google Scholar 

  4. H. Dym, Linear Algebra in Action, Amer. Math. Soc., Providence, RI, 2007.

    MATH  Google Scholar 

  5. A. A. Gaifullin and Yu. A. Neretin, “Infinite symmetric group and bordisms of pseudomanifolds” J. Topol. Anal. (to appear); https://arxiv.org/abs/1501.04062.

  6. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York–London, 1981.

    MATH  Google Scholar 

  7. I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Operators. Vol. II, Birkhauser, Basel, 1993.

    Book  MATH  Google Scholar 

  8. Ph. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Classics Library, John Wiley & Sons, New York, 1994.

    Book  Google Scholar 

  9. M. Hazewinkel, “Lectures on invariants, representations and Lie algebras in systems and control theory” in: Séminaire d’algèbre P. Dubreil et M.-P. Malliavin, 35ème Année (Paris 1982), Lecture Notes in Math., vol. 1029, Springer-Verlag, Berlin–Heidelberg, 1983, 1–36.

    Chapter  Google Scholar 

  10. N. Hitchin, “Riemann surfaces and integrable systems,” in: Integrable Systems, Clarendon Press, Oxford, 1999, 11–52.

    Google Scholar 

  11. R. S. Ismagilov, “Elementary spherical functions on the groups SL(2, P) over a field P, which is not locally compact with respect to the subgroup of matrices with integral elements,” Izv. Akad. Nauk SSSR, Ser. Mat., 31:2 (1967), 361–390; English transl.: Math. USSR Izv., 1:2 (1967), 349–380.

    MathSciNet  Google Scholar 

  12. M. S. Livshits, “On a certain class of linear operators in Hilbert space,” Mat. Sb., 19(61):2 (1946), 239–262; English transl.: Amer. Math. Soc. Transl. (Ser. 2), 13 (1960), 61–83.

    MathSciNet  MATH  Google Scholar 

  13. M. S. Livshits, “On spectral decomposition of linear nonself-adjoint operators,” Mat. Sb., 34:1 (1954), 145–199; English transl.: Amer. Math. Soc. Transl. (Ser. 2), 5 (1957), 67–114.

    MathSciNet  MATH  Google Scholar 

  14. C. Martin and R. Hermann, “Applications of algebraic geometry to systems theory: the McMillan degree and Kronecker indices of transfer functions as topological and holomorphic system invariants” SIAM J. Control Optim., 16:5 (1978), 743–755.

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford University Press, New York, 1996.

    MATH  Google Scholar 

  16. Yu. A. Neretin, “Multi-operator colligations and multivariate characteristic functions” Anal. Math. Phys., 1:2–3 (2011), 121–138.

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu. A. Neretin, “Sphericity and multiplication of double cosets for infinite-dimensional classical groups,” Funkts. Anal. Prilozhen., 45:3 (2011), 79–96; English transl.: Functional Anal. Appl., 45:3 (2011), 225–239.

    Article  MathSciNet  MATH  Google Scholar 

  18. Yu. A. Neretin, On concentration of convolutions of double cosets at infinite-dimensional limit, http://arxiv.org/abs/1211.6149.

  19. Yu. Neretin, “Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories,” Int. Math. Res. Not. IMRN, 3 (2012), 501–523.

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu. A. Neretin, “Infinite-dimensional p-adic groups, semigroups of double cosets, and inner functions on Bruhat–Tits buildings,” Izv. Ross. Akad. Nauk, Ser. Mat., 79:3 (2015), 87–130; English transl.: Russian Acad. Sci. Izv. Math., 79:3 (2015), 512–553.

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type,” Uspekhi Mat. Nauk, 70:4(424) (2015), 143–204; English transl.: Russian Math. Surveys, 70:4 (2015), 715–773.

    Article  MathSciNet  Google Scholar 

  22. G. I. Olshanski, “Unitary representations of (G,K)-pairs that are connected with the infinite symmetric group S(∞),” Algebra i Analiz, 1:4 (1989), 178–209; English transl.: Leningrad Math. J., 1:4 (1990), 983–1014.

    MathSciNet  Google Scholar 

  23. G. I. Olshanski, “Unitary representations of infinite dimensional pairs (G,K) and the formalism of R. Howe,” in: Representation of Lie Groups and Related Topics, Gordon and Breach, New York, 1990, 269–463.

    Google Scholar 

  24. G. I. Olshanskii, “Caractères généralisés du groupe U(∞) et fonctions intérieures” C. R. Acad. Sci. Paris. Sèr. 1, 313:1 (1991), 9–12.

    Google Scholar 

  25. V. L. Popov and E. B. Vinberg, “Invariant theory,” in: Algebraic Geometry IV, Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki, Fundamental’nye Napravleniya, VINITI, Moscow, 1989, 137–309; English transl.: Encyclopaedia of Math. Sci., vol. 55, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  26. V. P. Potapov, “The multiplicative structure of J -contractive matrix functions,” Trudy Moskov. Mat. Obshch., 4 (1955), 125–236; English transl.: Amer. Math. Soc. Transl. (2), 15 (1960), 131–243.

    MathSciNet  Google Scholar 

  27. C. Procesi, “The invariant theory of n × n matrices,” Adv. in Math., 19:3 (1976), 306–381.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Procesi, Lie groups. An Approach Through Invariants and Representations, Springer-Verlag, New York, 2007.

    MATH  Google Scholar 

  29. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, Akademiai Kiado, Budapest, 1970.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Neretin.

Additional information

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 51, No. 2, pp. 25–41, 2017 Original Russian Text Copyright © by Yu. A. Neretin

Supported by FWF grants P22122 and P25142.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neretin, Y.A. Multiplication of conjugacy classes, colligations, and characteristic functions of matrix argument. Funct Anal Its Appl 51, 98–111 (2017). https://doi.org/10.1007/s10688-017-0172-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-017-0172-5

Key words

Navigation