Skip to main content
Log in

Homogenization of Schrödinger-type equations

  • Brief Communications
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We consider a self-adjoint elliptic operator A ε , ε> 0, on L 2(Rd; Cn) given by the differential expression b(D)*g(x/ε)b(D). Here \(b(D) = \sum\nolimits_{j = 1}^d {b_j D_j }\) is a first-order matrix differential operator such that the symbol b(ξ) has maximal rank. The matrix-valued function g(x) is bounded, positive definite, and periodic with respect to some lattice. We study the operator exponential \({e^{ - i\tau {A_\varepsilon }}}\), where τ ∈ R. It is shown that, as ε → 0, the operator \({e^{ - i\tau {A_\varepsilon }}}\) converges to \({e^{ - i\tau {A^0}}}\) in the norm of operators acting from the Sobolev space H s(Rd;Cn) (with suitable s) to L 2(Rd;Cn). Here A 0 is the effective operator with constant coefficients. Order-sharp error estimates are obtained. The question about the sharpness of the result with respect to the type of the operator norm is studied. Similar results are obtained for more general operators. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation i∂ τu ε (x, τ) = A ε u ε (x, τ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. V. Zhikov, S. M. Kozlov, and O. A. Olejnik, Homogenization of differential operators, Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  2. M. Sh. Birman and T. A. Suslina, Algebra i Analiz, 15:5 (2003), 1–108; St. Petersburg Math. J., 15:5 (2004), 639–714.

    MathSciNet  Google Scholar 

  3. M. Sh. Birman and T. A. Suslina, Algebra i Analiz, 17:6 (2005), 1–104; St. Petersburg Math. J., 17:6 (2006), 897–973.

    MathSciNet  Google Scholar 

  4. M. Sh. Birman and T. A. Suslina, Algebra i Analiz, 18:6 (2006), 1–130; St. Petersburg Math. J., 18:6 (2007), 857–955.

    Google Scholar 

  5. T. A. Suslina, Funkts. Anal. Prilozhen., 38:4 (2004), 86–90; Functional Anal. Appl., 38:4 (2004), 309–312.

    Article  MathSciNet  Google Scholar 

  6. T. A. Suslina, in: Amer. Math. Soc. Transl. Ser. 2, vol. 220, Amer. Math. Soc., Providence, RI, 2007, 201–233.

    Google Scholar 

  7. T. A. Suslina, Math. Model. Nat. Phenom., 5:4 (2005), 390–447.

    Article  MathSciNet  Google Scholar 

  8. E. S. Vasilevskaya, Algebra i Analiz, 21:1 (2009), 3–60; St. Petersburg Math. J., 21:1 (2010), 1–41.

    MathSciNet  Google Scholar 

  9. E. S. Vasilevskaya and T. A. Suslina, Algebra i Analiz, 24:2 (2012), 1–103; St. Petersburg Math. J., 24:2 (2013), 185–261.

    MathSciNet  Google Scholar 

  10. V. V. Zhikov and S. E. Pastukhova, Russ. J. Math. Phys., 12:4 (2005), 515–524.

    MathSciNet  Google Scholar 

  11. V. V. Zhikov and S. E. Pastukhova, Russ. J. Math. Phys., 13:2 (2006), 224–237.

    Article  MathSciNet  Google Scholar 

  12. M. Sh. Birman and T. A. Suslina, Algebra i Analiz, 20:6 (2008), 30–107; St. Petersburg Math. J., 20:6 (2009), 873–928.

    MathSciNet  Google Scholar 

  13. T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–New York, 1976.

    Book  MATH  Google Scholar 

  14. T. A. Suslina, Homogenization of nonstationary Schrödinger type equations with periodic coefficients, http://arxiv.org/abs/1508.07641.

  15. M. A. Dorodnyi and T. A. Suslina, Funkts. Anal. Prilozhen., 2016 (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Suslina.

Additional information

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 50, No. 3, pp. 90–96, 2016 Original Russian Text Copyright © by T. A. Suslina

Supported by the Russian Foundation for Basic Research (project no. 16-01-00087).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslina, T.A. Homogenization of Schrödinger-type equations. Funct Anal Its Appl 50, 241–246 (2016). https://doi.org/10.1007/s10688-016-0154-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-016-0154-z

Keywords

Navigation