Functional Analysis and Its Applications

, Volume 50, Issue 1, pp 66–70 | Cite as

The Strong Suslin Reciprocity Law and Its Applications to Scissor Congruence Theory in Hyperbolic Space

  • D. G. RudenkoEmail author
Brief Communications


We prove the strong Suslin reciprocity law conjectured by A. B. Goncharov and describe its corollaries for the theory of scissor congruence of polyhedra in hyperbolic space. The proof is based on the study of Goncharov’s conjectural description of certain rational motivic cohomology groups of a field. Our main result is a homotopy invariance theorem for these groups.

Key words

scissor congruence reciprocity laws motivic cohomology polylogarithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. A. Beilinson and P. Deligne, in: Motives, Proc. Symp. Pure Math., vol. 55, part. 2, Amer. Math. Soc., Providence, RI, 1994, 97–121.Google Scholar
  2. [2]
    J. L. Dupont, Osaka J. Math., 19:3 (1982), 599–641.MathSciNetGoogle Scholar
  3. [3]
    A. B. Goncharov, J. Amer. Math. Soc., 18:1 (2005), 1–60.MathSciNetCrossRefGoogle Scholar
  4. [4]
    A. B. Goncharov, in: Proc. Sympos. Pure Math., vol. 55, part 2, Amer. Math. Soc., Providence, RI, 1994, 43–96.Google Scholar
  5. [5]
    A. Suslin and V. Voevodsky, in: The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., Vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189.CrossRefGoogle Scholar
  6. [6]
    A. A. Suslin, Izv. Akad. Nauk SSSR, Ser. Mat., 43:6 (1979), 1394–1429; English transl.: Math. USSR Izv., 15:3 (1980), 589–623.MathSciNetGoogle Scholar
  7. [7]
    A. A. Suslin, in: Galois Theory, Rings, Algebraic Groups and Its Applications, Trudy Mat. Inst. Steklov., 183 (1990), 180–199; English transl.: Proc. Steklov. Inst. Math., 183 (1991), 217–239.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations