Advertisement

Functional Analysis and Its Applications

, Volume 49, Issue 3, pp 230–233 | Cite as

On the centralizer of an infinite mixing rank-one transformation

  • V. V. Ryzhikov
  • J.-P. Thouvenot
Brief Communications

Abstract

A property of minimal self-joinings for mixing rank-one transformations preserving the measure of an infinite Lebesgue space is established. Its main consequence is the triviality of the centralizer of such transformations.

Keywords

mixing rank-one transformation sigma-finite measure minimal self-joinings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. M. Vershik, I. M. Gelfand, and M. I. Graev, Uspekhi Mat. Nauk, 30:6(186) (1975), 3–50zbMATHGoogle Scholar
  2. [1a]
    A. M. Vershik, I. M. Gelfand, and M. I. Graev, English transl.: Russian Math. Surveys, 30:6 (1975), 1–50.zbMATHGoogle Scholar
  3. [2]
    A. I. Danilenko and V. V. Ryzhikov, Ergodic Theory Dynam. Systems, 31:3 (2011), 853–873.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [3]
    R. S. Ismagilov, Funkts. Anal. Prilozhen., 9:2 (1975), 71–72MathSciNetGoogle Scholar
  5. [3a]
    R. S. Ismagilov, English transl.: Functional Anal. Appl., 9:2 (1975), 154–155.zbMATHMathSciNetGoogle Scholar
  6. [4]
    J. L. King, Ergodic Theory Dynam. Systems, 6 (1986), 363–384.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [5]
    M. Lemanczyk, F. Parreau, and J.-P. Thouvenot, Fund. Math., 164:3 (2000), 253–293.zbMATHMathSciNetGoogle Scholar
  8. [6]
    Yu. A. Neretin, Mat. Sb., 188:11 (1997), 19–50MathSciNetCrossRefGoogle Scholar
  9. [6a]
    Yu. A. Neretin, English transl.: Russian Acad. Sci. Sb. Math., 188:11 (1997), 1587–1616.zbMATHMathSciNetGoogle Scholar
  10. [7]
    D. Ornstein, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. II, University of California Press, Berkley, 1972, 347–356.Google Scholar
  11. [8]
    E. Roy, Ergodic Theory Dynam. Systems, 29:2 (2009), 667–683.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [9]
    D. J. Rudolph, J. Anal. Math., 35 (1979), 97–122.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [10]
    V. V. Ryzhikov, Mat. Sb., 183:3 (1992), 133–160zbMATHMathSciNetGoogle Scholar
  14. [10a]
    V. V. Ryzhikov, English transl.: Russian Acad. Sci. Sb. Math., 75:2 (1993), 405–427.MathSciNetGoogle Scholar
  15. [11]
    V. V. Ryzhikov, Trudy Moskov. Mat. Obshch., 75:1 (2014), 93–103Google Scholar
  16. [11a]
    V. V. Ryzhikov, English transl.: Trans. Moscow Math. Soc., 75 (2014), 77–85.MathSciNetGoogle Scholar
  17. [12]
    A. M. Vershik, Discrete Contin. Dynam. Sys., 13 (2005), 1305–1324.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Université Pierre et Marie CurieParis VIFrance

Personalised recommendations