Functional Analysis and Its Applications

, Volume 49, Issue 3, pp 226–229 | Cite as

Nikolskii inequality and functional classes on compact lie groups

  • E. D. Nursultanov
  • M. V. Ruzhansky
  • S. Yu. Tikhonov
Brief Communications


In this note we study the Besov, Triebel—Lizorkin, Wiener, and Beurling function spaces on compact Lie groups. A major role in the analysis is played by the Nikolskii inequality.


Nikolskii inequality Besov spaces Triebel—Lizorkin spaces Wiener space Beurling spaces compact Lie groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. S. Belinskii, E. R. Liflyand, and R. M. Trigub, J. Fourier Anal. Appl., 3:2 (1997), 103–129.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Beurling, Acta Math., 81:1 (1949), 225–238.zbMATHCrossRefGoogle Scholar
  3. [3]
    Z. Ditzian and S. Tikhonov, J. Approx. Theory, 133:1 (2005), 100–133.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Faraut, Analysis on Lie Groups, Cambridge University Press, Cambridge, 2008.zbMATHCrossRefGoogle Scholar
  5. [5]
    S. Minakshisundaram and O. Szász, Trans. Amer. Math. Soc., 61 (1947), 36–53.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    R. J. Nessel and G. Wilmes, J. Austral. Math. Soc. Ser. A, 25:1 (1978), 7–18.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. M. Nikol’skii, Tr. Mat. Inst. Steklov., 38 (1951), 244–278.Google Scholar
  8. [8]
    E. Nursultanov, M. Ruzhansky, and S. Tikhonov, Ann. Sc. Norm. Super. Pisa Cl. Sci. (to appear); Scholar
  9. [9]
    I. Pesenson, J. Approx. Theory, 150:2 (2008), 175–198.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    I. Pesenson, Math. Nachr., 282:2 (2009), 253–269.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Ruzhansky and V. Turunen, Pseudo-differential Operators and Symmetries. Background Analysis and Advanced Topics. Pseudo-Differential Operators. Theory and Applications, vol. 2, Birkhäuser, Basel, 2010.Google Scholar
  12. [12]
    M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 2001.zbMATHCrossRefGoogle Scholar
  13. [13]
    E. Stein, Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Princeton Univ. Press, Princeton, NJ, 1970.zbMATHGoogle Scholar
  14. [14]
    H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.CrossRefGoogle Scholar
  15. [15]
    R. M. Trigub and E. S. Bellinsky, Fourier Analysis and Approximation of Functions, Kluwer Academic Publ., Dordrecht, 2004.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. D. Nursultanov
    • 1
  • M. V. Ruzhansky
    • 2
  • S. Yu. Tikhonov
    • 3
  1. 1.Moscow State University (Kazakhstan branch)Eurasian National UniversityMoscowRussia
  2. 2.Department of Mathematics Imperial College LondonLondonUK
  3. 3.ICREA and Centre de Recerca Matemàtica (CRM)BarcelonaSpain

Personalised recommendations