Advertisement

Functional Analysis and Its Applications

, Volume 49, Issue 3, pp 205–209 | Cite as

Remarks on quantum Markov states

  • Z. I. Bezhaeva
  • V. I. Oseledets
Brief Communications
  • 48 Downloads

Abstract

The definition of a quantum Markov state was given by Accardi in 1975. For the classical case, this definition gives hidden Markov measures, which, generally speaking, are not Markov measures. We can use a nonnegative transfer matrix to define a Markov measure. We use a positive semidefinite transfer matrix and select a class of quantum Markov states (in the sense of Accardi) on the inductive limit of the C*-algebras \({M_{{d^n}}}\). An entangled quantum Markov state in the sense of Accardi and Fidaleo is a quantum Markov state in our sense. For the case where the transfer matrix has rank 1, we calculate the eigenvalues and the eigenvectors of the density matrices determining the quantum Markov state. The sequence of von Neumann entropies of the density matrices of this state is bounded.

Keywords

C*-algebra state on C*-algebra density matrix quantum Markov state von Neumann entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Accardi, Funkts. Anal. Prilozhen., 9:1 (1975), 1–8zbMATHMathSciNetCrossRefGoogle Scholar
  2. [1a]
    L. Accardi, English transl.: Functional Anal. Appl., 9:1 (1975), 1–7.zbMATHMathSciNetGoogle Scholar
  3. [2]
    L. Accardi and F. Fidaleo, Ann. Mat. Pura Appl., 184:3 (2005), 327–346.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [3]
    M. Fannes, B. Nachtergaele, and R. F. Werner, Comm. Math. Phys., 144:3 (1992), 443–490.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [4]
    Z. I. Bezhaeva and V. I. Oseledets, Zap. Nauchn. Sem. POMI, 326 (2005), 28–47zbMATHGoogle Scholar
  6. [4a]
    Z. I. Bezhaeva and V. I. Oseledets, English transl.: J. Math. Sci., 140:3 (2007), 357–368.MathSciNetGoogle Scholar
  7. [5]
    A. Jamiołkowski, Rep. Mathematical Phys., 3:4 (1972), 275–278.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [6]
    M. D. Choi, Linear Algebra Appl., 10 (1975), 285–290.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Financial UniversityLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations