Skip to main content
Log in

Optimal elliptic Sobolev regularity near three-dimensional multi-material Neumann vertices

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We study the optimal elliptic regularity (within the scale of Sobolev spaces) of anisotropic div-grad operators in three dimensions at a multi-material vertex on the Neumann part of the boundary of a 3D polyhedral domain. The gradient of any solution of the corresponding elliptic partial differential equation (in a neighborhood of the vertex) is p-integrable with p > 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alexandroff and H. Hopf, Topologie, Grundlehren der math. Wissenschaften, vol. 45, Springer-Verlag, Berlin, 1935; berichtigter Reprint, Springer-Verlag, Berlin-Heidelberg-New York, 1974.

    Google Scholar 

  2. R. H. Bing, The Geometric Topology of 3-Manifolds, AMS Colloquium Publications, vol. 40, Amer. Math. Soc., Providence, RI, 1983.

    Google Scholar 

  3. M. Chipot, D. Kinderlehrer, and G. V. Caffarelli, “Smoothness of linear laminates,” Arch. Rational Mech. Anal., 96:1 (1986), 81–96.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Costabel, M. Dauge, and S. Nicaise, “Singularities of Maxwell interface problem,” M2AN, Math. Model. Numer. Anal., 33:3 (1999), 627–649.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Cianchi and V. Maz’ya, “Neumann problems and isocapacitary inequalities,” J. Math. Pures Appl., 89:1 (2008), 71–105.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Dauge, “Neumann and mixed problems on curvilinear polyhedra,” Integral Equations Operator Theory, 15:2 (1992), 227–261.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Elschner, H.-C. Kaiser, J. Rehberg, and G. Schmidt, “W 1,q regularity results for elliptic transmission problems on heterogeneous polyhedra,” Math. Models Methods Appl. Sci., 17:4 (2007), 593–615.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Elschner, J. Rehberg, and G. Schmidt, “Optimal regularity for elliptic transmission problems including C 1 interfaces,” Interfaces Free Bound., 9:2 (2007), 233–252.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Haller-Dintelmann, H.-C. Kaiser, and J. Rehberg, “Elliptic model problems including mixed boundary conditions and material heterogeneities,” J. Math. Pures Appl., 89:1 (2008), 25–48.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Haller-Dintelmann and J. Rehberg, “Maximal parabolic regularity for divergence operators including mixed boundary conditions,” J. Differential Equations, 247 (2009), 1354–1396.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Hömberg, Ch. Meyer, J. Rehberg, and W. Ring, “Optimal control for the thermistor problem,” SIAM J. Control Optim., 48 (2010), 3449–3481.

    Article  MATH  Google Scholar 

  12. D. Jerison and C. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains,” J. Funct. Anal., 130:1 (1995), 161–219.

    Article  MathSciNet  MATH  Google Scholar 

  13. H.-C. Kaiser and J. Rehberg, “Optimal elliptic regularity at the crossing of a material interface and a Neumann boundary edge,” J. Math. Sci. (N.Y.), 169:2 (2010), 145–166.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Knees, “On the regularity of weak solutions of quasi-linear elliptic transmission problems on polyhedral domains,” Z. Anal. Anwendungen, 23:3 (2004), 509–546.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Leguillon and E. Sanchez-Palenzia, Computation of Singular Solutions in Elliptic Problems and Elasticity, John Wiley & Sons, Chichester; Masson, Paris, 1987.

    MATH  Google Scholar 

  16. Y. Y. Li and M. Vogelius, “Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients,” Arch. Ration. Mech. Anal., 153:2 (2000), 91–151.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Lukkainen and J. Väisälä, “Elements of Lipschitz topology,” Ann. Acad. Sci. Fenn., Ser. A I Math., 3:1 (1977), 85–122.

    Article  MathSciNet  Google Scholar 

  18. V. Maz’ya, Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1985.

    Google Scholar 

  19. V. Maz’ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, Math. Surveys and Monographs, vol. 162, Amer. Math. Soc., Providence, RI, 2010.

    Book  MATH  Google Scholar 

  20. V. Maz’ya and J. Rossmann, “Weighted estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains,” Z. Angew. Math. Mech., 83:7 (2003), 435–467.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Maz’ya, J. Elschner, J. Rehberg, and G. Schmidt, “Solutions for quasilinear evolution systems in Lp,” Arch. Ration. Mech. Anal., 171:1 (2004), 219–262.

    Article  MathSciNet  MATH  Google Scholar 

  22. V. G. Maz’ya and S. A. Nazarov, “Singularities of solutions of the Neumann problem at a conic point,” Sibirsk. Mat. Zh., 30:3 (1989), 52–63, 218; English transl.: Siberian Math. J., 30:3 (1989), 387–396.

    MathSciNet  Google Scholar 

  23. E. E. Moise, Geometric Topology in Dimensions 2 and 3, Graduate Texts in Math., vol. 47, Springer-Verlag, New York-Heidelberg, 1977.

    Google Scholar 

  24. S. Nicaise, Polygonal Interface Problems, Methoden und Verfahren der Mathematischen Physik, Bd. 39, Verlag Peter D. Lang, Frankfurt/M, 1993.

    Google Scholar 

  25. S. Nicaise and A.-M. Sändig, “General interface problems. I, II,” Math. Methods Appl. Sci., 17:6 (1994), 395–429, 431–450.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Petzoldt, “Regularity results for Laplace interface problems in two dimensions,” Z. Anal. Anwendungen, 20:2 (2001), 431–455.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Savaré, “Regularity results for elliptic equations in Lipschitz domains,” J. Funct. Anal., 152:1 (1998), 176–201.

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Siebenmann and D. Sullivan, “On complexes that are Lipschitz manifolds,” in: Geometric Topology (Proc. 1977 Georgia Topology Conf., Athens/GA 1977), Academic Press, New York-London, 1979, 503–525.

    Google Scholar 

  29. I. E. Tamm, Fundamentals of the theory of electricity, Mir Publishers, Moscow, 1979.

    Google Scholar 

  30. D. Zanger, “The inhomogeneous Neumann problem in Lipschitz domains,” Comm. Partial Differential Equations, 25:9–10 (2000), 1771–1808.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Haller-Dintelmann.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 48, No. 3, pp. 63–83, 2014

Original Russian Text Copyright © by R. Haller-Dintelmann, W. Höppner, H.-C. Kaiser, J. Rehberg, and G. M. Ziegler

Research by GMZ is supported by DFG Research Center Matheon and by ERC Advanced Grant agreement no. 247029-SDModels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haller-Dintelmann, R., Höppner, W., Kaiser, H.C. et al. Optimal elliptic Sobolev regularity near three-dimensional multi-material Neumann vertices. Funct Anal Its Appl 48, 208–222 (2014). https://doi.org/10.1007/s10688-014-0062-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-014-0062-z

Key words

Navigation