Skip to main content
Log in

Spectral curves for Cauchy-Riemann operators on punctured elliptic curves

Functional Analysis and Its Applications Aims and scope

Abstract

We show that one can define a spectral curve for the Cauchy-Riemann operator on a punctured elliptic curve under appropriate boundary conditions. The algebraic curves thus obtained arise, for example, as irreducible components of the spectral curves of minimal tori with planar ends in ℝ3. It turns out that these curves coincide with the spectral curves of certain elliptic KP solitons studied by Krichever.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S. P. Novikov, Funkts. Anal. Prilozhen., 8:3 (1974), 54–66; English transl.: Functional Anal. Appl., 8: 3 (1974), 236–246.

    Google Scholar 

  2. B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, Dokl. Acad. Nauk SSSR, 229:1 (1976), 15–18; English transl.: Soviet Math. Dokl., 229: 1 (1976), 947–952.

    Google Scholar 

  3. I. M. Krichever, Funkts. Anal. Prilozhen., 14:4 (1980), 45–54; English transl.: Functional Anal. Appl., 14: 4 (1980), 282–290.

    MATH  MathSciNet  Google Scholar 

  4. I. A. Taimanov, Funkts. Anal. Prilozhen., 32:4 (1998), 49–62; English transl.: Functional Anal. Appl., 32: 4 (1998), 258–267.

    Article  MathSciNet  Google Scholar 

  5. I. M. Krichever, Uspekhi Mat. Nauk, 44:2(266) (1989), 121–184; English transl.: Russian Math. Surveys, 44: 2(266) (1989), 145–225.

    MathSciNet  Google Scholar 

  6. B. G. Konopelchenko, Stud. Appl. Math., 96:1 (1996), 9–52.

    MATH  MathSciNet  Google Scholar 

  7. I. A. Taimanov, in: Solitons, Geometry, and Topology: on the Crossroad, Amer. Math. Soc. Transl., Ser. 2, vol. 179, 1997, 133–151.

    MathSciNet  Google Scholar 

  8. R. L. Bryant, J. Differential Geom., 20:1 (1984), 23–53.

    MATH  MathSciNet  Google Scholar 

  9. C. Bohle, J. Differential Geom., 86:1 (2010), 71–131.

    MATH  MathSciNet  Google Scholar 

  10. C. Bohle and I. A. Taimanov, “Euclidean minimal tori with planar ends and elliptic solitons,” (to appear).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bohle.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 47, No. 4, pp. 86–90, 2013

Original Russian Text Copyright © by C. Bohle and I. A. Taimanov

This work was supported by the Hausdorff Institute of Mathematics in Bonn. The first author (C.B.) acknowledges the support of DFG Sfb/Tr grant 71 (“Geometric Partial Differential Equations”), and the second author (I.A.T.) acknowledges the support of the Presidium of RAS program “Fundamental Problems of Nonlinear Dynamics in Mathematical and Physical Sciences.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohle, C., Taimanov, I.A. Spectral curves for Cauchy-Riemann operators on punctured elliptic curves. Funct Anal Its Appl 47, 319–322 (2013). https://doi.org/10.1007/s10688-013-0039-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-013-0039-3

Key words

Navigation