Abstract
It is observed that the Dirichlet ring admits a representation in an infinite-dimensional matrix algebra. The resulting matrices are subsequently used in the construction of nonorthogonal Riesz bases in a separable Hilbert space. This framework enables custom design of a plethora of bases with interesting features. Remarkably, the representation of signals in any one of these bases is numerically implementable via fast algorithms.
This is a preview of subscription content, access via your institution.
References
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York-Heidelberg-Berlin, 1976.
K. I. Babenko, “On conjugate functions,” Dokl. Akad. Nauk SSSR, 62 (1948), 157–160.
A. Beurling, “The collected works of Arno Beurling,” in: Harmonic Analysis, Contemp. Math., vol. 2, Birkhäuser, Boston, 1989, 378–380.
L. Carleson, “On convergence and growth of partial sums of Fourier series,” Acta Math., 116 (1966), 135–157.
K. Chandrasekharan, Arithmetical Functions, Springer-Verlag, New York-Heidelberg-Berlin, 1970.
P. Djakov and B. Mityagin, “Bari-Markus property for Riesz projections of 1D periodic Dirac operators,” Math. Nachr., 283 (2010), 443–462.
I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Math. Monographs, vol. 18, Amer. Math. Soc., Providence, RI, 1969.
H. Hedenmalm, P. Lindqvist, and K. Seip, “A Hilbert space of Dirichlet series and systems of dilated functions in L 2(0, 1),” Duke Math. J., 86 (1997), 1–37.
T. Kato, Perturbation Theory for Linear Operators; Corr. Printing of the 2nd Ed., Springer-Verlag, Berlin-Heidelberg-New York, 1980.
A. M. Olevskii, “On operators generating conditional bases in a Hilbert space,” Mat. Zametki, 12:1 (1972), 73–84; English transl.: Math. Notes, 12:1 (1972), 476–482.
A. A. Shkalikov, “On the basis problem of eigenfunctions of an ordinary differential operator,” Uspekhi Matem. Nauk, 34:5(209) (1979), 235–236; English transl.: Russian Math. Surveys, 34:5 (1979), 249–250.
A. Sowa, “A fast-transform basis with hysteretic features,” in: IEEE Conference Proceedings: Electrical and Computer Engineering (CCECE), 2011 24th Canadian Conference on, 8–11 May 2011, 000253–000257.
A. Sowa, “Factorizing matrices by Dirichlet multiplication,” Linear Algebra Appl., 438:5 (2013), 2385–2393.
A. Sowa, “On an eigenvalue problem with a reciprocal-linear term,” Waves in Random and Complex Media, 22:2 (2012), 186–206.
R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York-London-Toronto, 1980.
Author information
Authors and Affiliations
Corresponding author
Additional information
__________
Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 47, No. 3, pp. 75–81, 2013
Original Russian Text Copyright © by Artur Sowa
The author gratefully acknowledges the support of the Canadian Foundation for Innovation, grant LOF no. 22117.
Since all bounded unconditional bases are Riesz, we will henceforth use the two terms interchangeably.
Rights and permissions
About this article
Cite this article
Sowa, A. The Dirichlet ring and unconditional bases in L 2[0, 2π]. Funct Anal Its Appl 47, 227–232 (2013). https://doi.org/10.1007/s10688-013-0028-6
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10688-013-0028-6