Functional Analysis and Its Applications

, Volume 47, Issue 2, pp 104–112 | Cite as

Absence of eigenvalues for the periodic Schrödinger operator with singular potential in a rectangular cylinder

Article

Abstract

We consider the periodic Schrödinger operator on a d-dimensional cylinder with rectangular section. The electric potential may contain a singular component of the form σ(x, y)δΣ(x,y), where Σ is a periodic system of hypersurfaces. We establish that there are no eigenvalues in the spectrum of this operator, provided that Σ is sufficiently smooth and σLp,loc(Σ), p > d − 1.

Key words

Schrödinger operator periodic coefficients absolutely continuous spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Sh. Birman and T. A. Suslina, “Periodic magnetic Hamiltonian with variable metric. The problem of absolute continuity,” Algebra i Analiz, 11:2 (1999), 1–40; English transl.: St. Petersburg Math. J., 11:2 (2000), 203–232.MathSciNetMATHGoogle Scholar
  2. [2]
    M. Sh. Birman, T. A. Suslina, and R. G. Shterenberg, “Absolute continuity of the spectrum of a two-dimensional Schrödinger operator with potential supported on a periodic system of curves,” Algebra i Analiz, 12:6 (2000), 140–177; English transl.: St. Petersburg Math. J., 12:6 (2001), 983–1012.MathSciNetGoogle Scholar
  3. [3]
    N. Burq, P. Gérard, and N. Tzvetkov, “Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds,” Duke Math. J., 138:3 (2007), 445–486.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    L. Danilov, “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator,” J. Phys. A: Math. Theor., 42:27 (2009), 275204.MathSciNetCrossRefGoogle Scholar
  5. [5]
    I. Kachkovskiĭ, “Stein-Tomas theorem for a torus and the periodic Schrödinger operator with singular potential,” Algebra i Analiz, 24:6 (2012), 124–138.Google Scholar
  6. [6]
    I. Kachkovskiĭ and N. Filonov, “Absolute continuity of the Schrdinger operator spectrum in a multidimensional cylinder,” Algebra i Analiz, 21:1 (2009), 133–152; English transl.: St. Petersburg Math. J., 21:1 (2010), 95–109.Google Scholar
  7. [7]
    I. Kachkovskiĭ and N. Filonov, “Absolute continuity of the spectrum of the periodic Scrödinger operator in a layer and in a smooth cylinder, Boundary-value problems of mathematical physics and related problems of function theory. Part 41,” Zap. Nauchn. Sem. POMI, 385 (2010), 69–82; English transl.: J. Math. Sci. (N.Y.), 178:3 (2011), 274–281.Google Scholar
  8. [8]
    T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1966.MATHCrossRefGoogle Scholar
  9. [9]
    P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhauser, Basel, 1993.MATHCrossRefGoogle Scholar
  10. [10]
    P. Kuchment and S. Levendorskii, “On the structure of spectra of periodic elliptic operators,” Trans. Amer. Math. Soc., 354:2 (2001), 537–569.MathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Prokhorov and N. Filonov, On the spectrum of the periodic Maxwell operator in a cylinder (to appear).Google Scholar
  12. [12]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4: Analysis of Operators, Academic Press, New York-London, 1978.Google Scholar
  13. [13]
    E. Shargorodsky and A. V. Sobolev, “Quasiconformal mappings and periodic spectral problems in dimension two,” J. Anal. Math., 91 (2003), 67–103.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Z. Shen, “On absolute continuity of the periodic Schrödinger operators,” Intern. Math. Res. Notes, 2001:1 (2001), 1–31.MATHCrossRefGoogle Scholar
  15. [15]
    R. G. Shterenberg, “Absolute continuity of the spectrum of two-dimensional periodic Schrödinger operators with strongly subordinate magnetic potential,” Investigations on Linear Operators and Function Theory. Part 31, Zap. Nauchn. Sem. POMI, 303 (2003), 279–320; English transl.: J. Math. Sci. (N.Y.), 129:4 (2005), 4087–4109.Google Scholar
  16. [16]
    A. Sobolev and J. Walthoe, “Absolute continuity in periodic waveguides,” Proc. London Math. Soc., 85:3 (2002), 717–741.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    T. A. Suslina, “On the absence of eigenvalues of a periodic matrix Schrödinger operator in a layer,” Russ. J. Math. Phys., 8:4 (2001), 463–486.MathSciNetMATHGoogle Scholar
  18. [18]
    T. A. Suslina, “Absolute continuity of the spectrum of the periodic Maxwell operator in a layer,” Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Zap. Nauchn. Sem. POMI, 288 (2002), 232–255; English transl.: J. Math. Sci. (N.Y.), 123:6 (2004), 4654–4667.Google Scholar
  19. [19]
    T. A. Suslina and R. G. Shterenberg, “Absolute continuity of the spectrum for the Schrödinger operator with potential supported by a periodic system of hypersurfaces,” Algebra i Analiz, 13:5 (2001), 197–240; English transl.: St. Petersburg Math. J., 13:5 (2002), 859–891.Google Scholar
  20. [20]
    T. A. Suslina and R. G. Shterenberg, “Absolute continuity of the spectrum of the magnetic Schrödinger operator with a metric in a two-dimensional periodic waveguide,” Algebra i Analiz, 14:2 (2002), 159–206; English transl.: St. Petersburg Math. J., 14:2 (2003), 305–343.MathSciNetGoogle Scholar
  21. [21]
    L. Thomas, “Time dependent approach to scattering from impurities in a crystal,” Comm. Math. Phys., 33 (1973), 335–343.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.St. Petersburg Department of Steklov Mathematical InstituteSt. PetersburgRussia

Personalised recommendations