Advertisement

Functional Analysis and Its Applications

, Volume 47, Issue 1, pp 64–66 | Cite as

Absence of conductivity-type solitons for the Novikov-Veselov equation at zero energy

  • A. V. KazeykinaEmail author
Article
  • 59 Downloads

Abstract

It is proved that the Novikov-Veselov equation (an analogue of the KdV equation in dimension 2+1) at zero energy does not have sufficiently localized soliton solutions of conductivity type.

Key words

Novikov-Veselov equation solitons two-dimensional Schrödinger equation potentials of conductivity type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Boiti, J. J. P. Leon, M. Manna, and F. Pempinelli, Inverse Problems, 3:1 (1987), 25–36.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    L. D. Faddeev, Dokl. Akad. Nauk SSSR, 165 (1965), 514–517; English transl.: Soviet Phys. Dokl., 10 (1966), 1033–1035.MathSciNetGoogle Scholar
  3. [3]
    P. G. Grinevich and S. P. Novikov, Funkts. Anal. Prilozhen., 22:1 (1988), 23–33; English transl.: Functs. Anal. Appl., 22: 1 (1988), 19–27.MathSciNetGoogle Scholar
  4. [4]
    M. Lassas, J. L. Mueller, and S. Siltanen, Comm. Partial Differential Equations, 32:4–6 (2007), 591–610.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    S. V. Manakov, Uspekhi Mat. Nauk, 31:5 (1976), 245–246.MathSciNetzbMATHGoogle Scholar
  6. [6]
    A. I. Nachman, Ann. of Math., 143:1 (1995), 71–96.MathSciNetCrossRefGoogle Scholar
  7. [7]
    R. G. Novikov, Funkts. Anal. Prilozhen., 22:4 (1988), 11–22; English transl.: Functs. Anal. Appl., 22 (1988), 263–272.Google Scholar
  8. [8]
    R. G. Novikov, Phys. Lett. A, 375:9 (2011), 1233–1235.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    S. P. Novikov and A. P. Veselov, Dokl. Akad. Nauk SSSR, 279:1 (1984), 20–24; English transl.: Soviet Math. Dokl., 30 (1984), 588–591.MathSciNetGoogle Scholar
  10. [10]
    S. P. Novikov and A. P. Veselov, Dokl. Akad. Nauk SSSR, 279:4 (1984), 784–788; English transl.: Soviet Math. Dokl., 30 (1984), 705–708.MathSciNetGoogle Scholar
  11. [11]
    T.-Y. Tsai, Inverse Problems, 9:6 (1993), 763–787.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.CMAPEcole PolytechniquePalaiseauFrance

Personalised recommendations